-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

145 Targeting the Human Notch 2-BCR Axis: A Driver of B-Cell Hyper-Responsiveness in Active Chronic Graft-Versus Host Disease (cGVHD)

Experimental Transplantation: Immune Function, GVHD and Graft-versus-Tumor Effects
Program: Oral and Poster Abstracts
Type: Oral
Session: 702. Experimental Transplantation: Immune Function, GVHD, and Graft-versus-Tumor Effects: Novel Approaches to Dampen GVHD
Saturday, December 5, 2015: 4:00 PM
W414AB, Level 4 (Orange County Convention Center)

Jonathan C. Poe, PhD1*, Wei Jia, MD1*, Zhiguo Li, PhD1*, Frances T. Hakim, PhD2*, Steven Z. Pavletic, MD2, Jeremy J. Rose, BA2*, David A. Rizzieri, MD1, Yiping Yang, MD, PhD1, Benny J. Chen, MD1, Michael Green, MD1*, Sarah Anand, MD1, Christian W. Siebel, PhD3*, Ivan Maillard, MD, PhD4, Nelson J. Chao, MD1 and Stefanie Sarantopoulos, MD, PhD1

1Dept. of Medicine, Div. of Hematological Malignancies & Cellular Therapy, Duke University Medical Center, Durham, NC
2Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
3Dept. of Molecular Biology, Genentech, Inc., South San Francisco, CA
4Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, MI

While Notch signaling is being well studied with regard to T cell pathology and graft-versus host disease (GVHD) (Tran IT et al., 2013. J. Clin. Invest.), the role of Notch receptors in the development and activation of B cell subsets in chronic GVHD (cGVHD) genesis remains unknown. We previously identified a subset of Ôpre-germinal centerÕ B cells within the peripheral blood of cGVHD patients that is largely absent in patients without cGVHD. In addition to cell surface characteristics, this extrafollicular B cell subset has potential functional characteristics of marginal zone (MZ)-like B cells, including increased responsiveness to surrogate antigen stimulation. Along with increased proliferative responses to BCR stimulation, B cells from patients with active cGVHD had significantly increased signaling via proximal B cell receptor (BCR) molecules, including Syk and BLNK. In murine models with lymphopenic environments, Notch 2 binds the ligand Delta-like 1 (DLL1/Dll1) and drives maturation of MZ-like B cells. Also, healthy human B cells have increased Notch receptor responsiveness after BCR stimulation. Together previous studies allowed us to hypothesize that a Notch 2 signaling axis underpins B cell hyper-responsiveness in human cGVHD. We found that limiting dose BCR stimulation with surrogate antigen in the presence of Notch ligand over-expressing cells (OP9-DL1) resulted in maintenance of cell surface Notch 2 expression at significantly higher levels on  B cells from patients with active cGVHD compared to patients without cGVHD, as assessed by flow cytometry analysis (P < 0.01). We also found that in the presence of Notch ligand, B cells from patients with active cGVHD responded to minimal BCR stimulation with surrogate antigen. Using nearly 100x less surrogate antigen than was required to induce proliferation without Notch ligand, cGVHD B cells proliferated to a significantly greater degree than B cells from patients with no cGVHD, as evaluated by Ki-67 staining using flow cytometry (P < 0.001 in a two-sided t-test, Figure 1A). Likewise, concomitant BCR- Notch activation of active cGVHD patient B cells was associated with significantly increased B-cell size compared to patients without disease (P < 0.01). BLNK expression in active cGVHD B cells was also maintained at higher levels under these conditions, suggesting a mechanistic link between the BCR and Notch pathways in cGVHD. Strikingly, targeting Notch 2 with an antagonistic monoclonal antibody (mAb) (Wu Y et al., 2010. Nature; kindly provided by Genentech, Inc.) completely abrogated the BCR-Notch axis hyper-responsiveness of active cGVHD B cells without affecting B-cell survival (P < 0.001, Figure 1B). In this in vitro system, using nanoString Technologies¨ gene profiling, we found that two, well-defined effector genes downstream of Notch signaling were significantly decreased in active cGVHD B cells after exposure to the anti-Notch 2 mAb (P = 0.0006 and P < 0.02, respectively, compared to isotype control mAb). Also consistent with a Notch 2-driven activation pathway, the expression of multiple genes involved in homeostasis/cell cycle regulation were altered in active cGVHD B cells exposed to anti-Notch 2 mAb (P < 0.01). Finally, ongoing in vivo analyses of the Notch 2 mAb in a pre-clinical mouse model of cGVHD indicates that Notch 2 blockade does not negatively impact early B cell recovery following bone marrow transplantation. These results may reveal that therapeutic targeting of Notch 2 alone would be sufficient to quell B cell hyper-responsiveness in active cGVHD, while preserving protective humoral immunity.

            In summary, our data suggest a working model in which Notch-mediated aberrant B cell maturation contributes to cGVHD pathophysiology. In this model, Notch 2 stimulation along with a combination of complex B-cell selection and tolerance mechanisms afford production of pathological B cells. Given that Notch 2 is a cell surface receptor expressed by activated B cell subsets of pathological relevance, and Notch 2 blockade has been shown to be well-tolerated in pre-clinical models, our findings support an important clinical opportunity: Targeting Notch 2 on B cells in active cGVHD represents a viable future therapeutic strategy worthy of continued investigation.

This work was supported by National Institutes of Health grant 5K08-HL107756, and a Translational Research Program grant from the Leukemia & Lymphoma Society.

Disclosures: Rizzieri: Teva: Other: ad board , Speakers Bureau ; Celgene: Other: ad board , Speakers Bureau .

Previous Abstract | Next Abstract >>

*signifies non-member of ASH