Type: Oral
Session: 102. Iron Homeostasis and Biology: New Insights into Iron-related Proteins in Erythropoiesis and Inflammation
Hematology Disease Topics & Pathways:
Research, Translational Research, Thalassemia, Hemoglobinopathies, Diseases, Maternal Health
Pregnancies were analyzed at E18.5 (near term). Control pregnancies were WT C57BL/6 dams carrying WT fetuses, whereas Th3/+ dams carried fetuses of both genotypes (WT or Th3). In thalassemic pregnancies, we noted pathophysiological changes affecting maternal, placental, and fetal iron homeostasis and erythropoiesis. Th3/+ dams had iron overload and anemia, with inappropriately decreased hepcidin. Placentas were characterized by placentomegaly, iron loading and hypoxia. Fetuses experienced growth restriction, iron loading, oxidative stress and hypoxia in multiple tissues, as compared to WT pregnancies. Notably, abnormalities in thalassemic pregnancies were seen even in WT fetuses from Th3/+ dams, indicating a strong effect of maternal disease on fetal health.
In the fetal brain from thalassemic pregnancies, we detected higher iron loading and increased expression of oxidative stress marker Gpx4, regardless of fetal genotype. To determine if iron and ROS caused epigenetic changes, we performed ELISA quantification of global 5-mC methylation in the fetal brain. Compared to control pregnancies, a four-fold decrease in methylation was observed in embryos from thalassemic dams, regardless of fetal genotype. Interestingly, fetal brains from iron-deficient anemic pregnancies showed no changes in global methylation levels. Thus, the observed hypomethylation in thalassemic pregnancy is likely caused by iron overload and not by anemia itself.
Our model indicates that thalassemic pregnancies adversely impact fetuses regardless of the fetal genotype, producing fetal iron overload and epigenetic changes that could have lasting effects. Clinical studies are needed to ascertain if human fetuses are similarly affected by maternal b-thalassemia. Defining the pathophysiological perturbations in thalassemic pregnancies will enable the development of interventions to improve pregnancy outcomes.
Disclosures: No relevant conflicts of interest to declare.