Session: 101. Red Cells and Erythropoiesis, Excluding Iron: Poster III
Hematology Disease Topics & Pathways:
Research, Fundamental Science
METHODS: Heparinized human, eNOS(-/-), or wt murine (C57BL/6J) red blood cells (RBCs) were imaged (Nikon) for the analysis of cytoskeletal protein arrangement and eNOS migration. RBCs were subjected to oxygenation/deoxygenation, with/without pre-treatment with the Piezo1 agonist Yoda1, or a membrane tension buffer grammostola mechanotoxin #4 (GSMTx4; decoupling Piezo1), or carbon monoxide (CO) to maintain R-state Hb conformation upon RBC deoxygenation. RBCs were fixed (paraformaldehyde 4%/glutaraldehyde 0.08%), permeabilized (Triton X100 amount 0.1%) and incubated with primary antibodies (spectrin, actin, protein 4.1, or eNOS), then with the secondary antibody prior to visualization. Interaction between eNOS and cytoskeleton proteins, as well as calmodulin, was determined using a proximity ligation assay (Duolink). Intracellular RBC calcium levels were assessed in oxygenated/deoxygenated RBCs utilizing an environmentally controlled fluorescent plate reader, and the calcium probe Fluo 3. NO production in RBCs was assessed using DAF-FM. To assess the functional significance of this mechanism, Hb-O2 affinity was determined from murine blood (eNOS(-/-) or wt). Oxygen dissociation curves (ODCs), were constructed at 2 fixed CO2 levels (thin film rotating tonometer; in conjunction with a gas blender; with samples measured by arterial blood gas machine).Bohr effect was assessed by determining the area between the ODCs (ABC) at the 2 fixed CO2 levels (~40mmHg and ~70mmHg).
RESULTS: We observed several significant findings related to red RBC deoxygenation. Upon RBC deoxygenation, there is an increase in calcium levels indicated by the Fluo3 signal, which is Piezo1 dependent. Cytoskeleton proteins, such as Actin, Spectrin, and protein 4.1, undergo disassembly upon RBC deoxygenation. This disassembly process is contingent on both Piezo1-mediated calcium flux and the conformational changes in hemoglobin (Hb) (and not pO2). We found that eNOS is associated with 4.1 throughout the oxy/deoxy cycle and that eNOS exhibits the same migratory pattern as cytoskeleton proteins to the RBC membrane, where calmodulin is located, irrespective of the RBC's oxygenation state. Additionally, when eNOS localizes in the membrane, it exhibits interaction with calmodulin. The generation of nitric oxide (NO) by eNOS, as indicated by the DAF-FM signal, increases in a manner dependent on both calcium, Piezo1 and Hb conformational transition. The functional consequence of this mechanism appears to be related to O2 delivery phenotype during circulatory transit, with cell deformability being affected in addition to an inhibition of the Bohr effect in eNOS(-/-) compared to wt mice (2006 ± 61 vs 1892 ± 69 ABC in WT (n = 3) vs eNOS(-/-) (n = 4), respectively; p = 0.0747).
SUMMARY: Upon circulatory transit, RBC deoxygenation triggers the activation of eNOS. This activated eNOS is associated with Piezo1-mediated calcium flux, which is facilitated by calmodulin. These events are coordinated with the migration of eNOS within the red blood cell between the cytosol and the cell membrane. The migration of eNOS is influenced by cytoskeleton proteins.
Disclosures: D'Alessandro: Hemanext Inc: Consultancy; Macopharma: Consultancy; Omix Technologies Inc: Current equity holder in private company.
See more of: Oral and Poster Abstracts