Session: 604. Molecular Pharmacology and Drug Resistance: Myeloid Neoplasms: Poster II
Hematology Disease Topics & Pathways:
Research, Acute Myeloid Malignancies, AML, Translational Research, drug development, Diseases, Therapies, Myeloid Malignancies
Signal transducer and activator of transcription 3 (STAT3) belonging to the STAT family of transcription factors is well known to be inappropriately activated in several malignancies [3]. On stimulation by cytokines such as IL-6, STAT3 undergoes dimerization and phosphorylation. Phosphorylation at Tyr705 leads to its translocation to the nucleus whereas phosphorylation at Ser727 translocates it to the mitochondria [4]. Previous data from our lab demonstrated de-methylation and overexpression of STAT3 in MDS & AML stem cells, that is associated with an adverse prognosis [5]. We have also reported that STAT3 controls several important leukemic drivers such as the anti-apoptotic protein myeloid cell leukemia-1 (MCL1). MCL1 overexpression is the central mechanism of resistance to BCL2 inhibition (Ven) in AML [5]. While MCL1 is a well-known direct transcriptional target of STAT3, the role of STAT3 in venetoclax resistance (Ven-res) is unknown.
Methods & Results: To understand the role of STAT3 in Venetoclax resistance (Ven-res), Ven-res AML cell lines (MOLM-13, MV-4-11) as well as a Ven-res large cell lymphoma cell line (SU-DHL-1) were generated, which exhibited increased levels of both total STAT3, phospho-STAT3 and its downstream effector, MCL1, when compared to their parental cell lines (Fig. 1A). Data from > 90 AML patients treated with prior Ven also showed high expression of total STAT3 along with enhanced phosphorylation for pSer727 and pTyr-705 STAT3, that strongly correlated with worse overall survival (OS) and reduced remission duration (RemDur) (p<0.05).
A highly specific potent heterobifunctional degrader of STAT3 (degrader) resulted in a dose dependent and selective degradation of STAT3 in both parental and Ven-res hematological malignancy cell lines. Treatment with degrader showed a significant (>60%) decrease in pTyr-705 as well as pSer-727 STAT3 levels in MOLM-13 parental as well as MOLM-13 Ven-res cells. STAT3 degradation also led to induction of apoptosis in both parental and Ven-res AML cell lines (p < 0.001).
Importantly, colony assay of Ven-res AML patient samples showed effective degradation of STAT3 (>90%) together with the increased erythroid and myeloid differentiation (~ 2 fold) on treatment with degrader. Interestingly, no differentiation was observed in healthy samples, suggesting the specificity of the degrader to AML stem and progenitor cells. In patients with Ven-res AML, erythroid colony counts were seen to increase (~1.5 fold) with a concomitant decrease in myeloid colony counts (>2.5 fold), on treatment with degrader. This observation supports the clinical significance of our studies in AML patients with anemia. Although BH3 profiling of Ven-res MOLM-13 supports an increased dependency on MCL1, we have observed that treatment with degrader led to ~20% reduction in the MCL1 dependent mitochondrial depolarization.
Additionally, cell derived xenograft (CDX) models of Ven-res showed significant reduction of pTyr-705 STAT3(~60%), total STAT3 (>90%) and MCL1 (~70%), on treatment with STAT3 degrader - KT-333 (currently in an early phase clinical trial:NCT05225584), as early as week 2 (Fig 1B). Significant decrease in intracellular STAT3 in the spleen cells was also observed (p < 0.05), with ongoing survival analysis.
Conclusion: Our study suggests that targeting STAT3 and the downstream MCL1 represents a novel and effective strategy for Ven-resistant AML patients in clinic, with strong mechanistic rationales that can spur further clinical development of STAT3 degraders especially given the significant side effects of direct MCL1 inhibitors.
Disclosures: Dey: Kymera Therapeutics: Current Employment, Divested equity in a private or publicly-traded company in the past 24 months. Chutake: Kymera Therapeutics Inc.: Current Employment, Divested equity in a private or publicly-traded company in the past 24 months, Patents & Royalties: Patent Application. Mantzaris: Kite, a Gilead company: Honoraria. Choudhary: Curis: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Verma: Eli Lilly: Research Funding; Novartis: Other: Scientific Advisor; Bakx: Current equity holder in private company, Other: Scientific Advisor; Acceleron: Other: Scientific Advisor; BMS: Research Funding; Curis: Research Funding; Incyte: Research Funding; Medpacto: Research Funding; Stelexis: Current equity holder in private company, Honoraria, Other: Scientific Advisor; Celgene: Other: Scientific Advisor; GSK: Research Funding; Prelude: Research Funding; Janssen: Honoraria; Throws Exception: Current equity holder in private company. Gavathiotis: Guidepoint, Boehringer Ingelheim: Consultancy; BAKX Therapeutics, Life Biosciences, Stelexis Therapeutics: Current equity holder in private company; Albert Einstein College of Medicine: Current Employment, Patents & Royalties. Konopleva: Reata Pharmaceuticals.: Current holder of stock options in a privately-held company, Patents & Royalties; AbbVie, Ablynx, Allogene, AstraZeneca, Cellectis, Daiichi, FortySeven, Genentech, Gilead, Immunogen, MEI Pharma, Precision Biosciences, Rafael Pharmaceutical, Sanofi Aventis, Stemline-Menarini: Research Funding; AbbVie, AstraZeneca, Genentech, Gilead, Janssen, MEI Pharma, Sanofi Aventis, Stemline-Menarini, Vincerx: Consultancy. Gollob: Kymera Therapeutics: Current Employment. Shastri: Rigel Pharmaceuticals: Honoraria; Kymera Therapeutics: Honoraria, Research Funding; Gilead Sciences: Honoraria; Janssen Pharmaceuticals, Inc.: Consultancy, Honoraria.
See more of: Oral and Poster Abstracts