Type: Oral
Session: 201. Granulocytes, Monocytes, and Macrophages: New Insights into Inherited and Acquired Neutropenias
Hematology Disease Topics & Pathways:
Research, Biological therapies, Translational Research, Bone Marrow Failure Syndromes, Inherited Marrow Failure Syndromes, Diseases, Gene Therapy, Therapies
We have screened cis-regulatory regions in the ELANE core promoter and, using CRISPR/Cas9n, introduced two nicks on opposing strands of the Goldberg-Hognes box region (TATA-box) to make the transcription starting process inefficient, as transcription factors and RNApol II cannot recognize the modified sequence. The proposed strategy targets the non-coding region of the ELANE gene and thus does not generate new unwanted variants. Also, by replacing Cas9 with Cas9-ncikase, the off-target activity should decrease by up to 1000-fold. We have observed a markedly elevated neutrophil differentiation in gene-edited ELANE-CN patients HSPCs (n = 2), as assessed by the percentage of CD45+CD11b+CD15+, CD45+CD15+CD16+, and CD45+CD16+CD66b+ myeloid/granulocytic cells, compared to the mock electroporated ELANE-CN group, while no disruption of granulopoiesis in healthy donor HSPCs (n = 2) was detected. Results validated by the CFU assay. To have nucleotide-level resolution of on-target events, we performed targeted next-generation sequencing of edited loci on gene-edited healthy donors and ELANE-CN HSPCs. Next-generation sequencing results showed >90% on-target efficiency. CRISPR/Cas9n-mediated targeting of the TATA box rescued defective granulopoiesis in vivo, as gene-edited ELANE-CN HSPCs (n = 3) were transplanted in NSG mice and assessed by the percentage of neutrophils (hCD19-hCD3-hCD66bInt/lowhCD33+hCD16high) after 16 weeks. We have also observed efficient engraftment and preserved the multilineage potential of gene edited HSPCs in immunodeficient NSG mice. The strategy also depicted a safe profile upon applying gene editing to healthy donor CD34+ HSPCs and performing GUIDE-seq and CAST-seq. GUIDE-seq highlighted two potential off-target sites after >=6 mismatches, while no chromosomal translocations were detected by CAST-seq. RNA-sequencing of in vitro-generated neutrophils from gene-edited HSPCs of healthy donors (n = 2) confirmed a >9-fold reduction of ELANE gene expression level. Important to note, none of the other serine proteases or neighboring genes were down-regulated.
Taken together, ex vivo CRISPR-Cas9n-based gene editing of ELANE’s gene promoter in the setting of autologous stem cell transplantation could be a safe therapeutic approach for all ELANE-CN patients.
Disclosures: No relevant conflicts of interest to declare.