Session: 641. Chronic Lymphocytic Leukemias: Basic and Translational: Poster III
Hematology Disease Topics & Pathways:
Research, Lymphoid Leukemias, Biological therapies, Translational Research, CLL, Chimeric Antigen Receptor (CAR)-T Cell Therapies, genomics, Diseases, immune mechanism, Therapies, Immunotherapy, immunology, Lymphoid Malignancies, metabolism, Biological Processes, molecular biology, Study Population, Human
Metabolic profiling of T cells from CLL patients and age-matched healthy donors (HD) was performed by extracellular flux analysis, flow cytometry, metabolomics and 13C tracing. A decreased mitochondrial respiration upon T-cell receptor stimulation was observed in all CLL patients. On the other hand, glycolytic activity correlated with T-cell activation status, which varied among patients. We identified alterations in the utilization of the three main mitochondrial fuels in T cells from CLL patients: i) induction of pseudohypoxia by CLL cells, leading to a re-routing of glucose-derived pyruvate into lactate rather than into the mitochondria; ii) a reduced rate of conversion of glutamine into glutamate resulting in decreased utilization of this fuel within the mitochondria; and iii) impaired lipid uptake, along with diminished fatty acid oxidation. Accordingly, mitochondria from CLL T cells showed intrinsic features of dysfunction including depolarization and increased production of reactive oxygen species (ROS). So far, these findings strongly demonstrate a misbalance in metabolic fueling resulting in mitochondrial dysfunction, aligning more closely with senescence rather than classical T-cell exhaustion. To further reinforce this observation, we assessed the expression of cell-surface proteins that characterize senescent T cells (e.g., absence of CD27/CD28 and presence of PD1/CD57/KLRG1). Indeed, we found an increased proportion of senescent cells in the T-cell compartment of CLL patients, as compared to HD. In response to stimulation, CLL T cells showed a strikingly distinct cell-cycle pattern whereby a larger proportion of cells resided in S and G2/M phases, indicating cell-cycle arrest. Cell cycle arrest is often induced by DNA damage. Transcriptomic and epigenomic profiling of T cells of CLL patients indeed revealed a molecular profile consistent with inflammation and an increased p53/DNA damage response upon stimulation. These features are known to be induced by dysfunctional mitochondria and ROS in senescent cells, underscoring a direct link between mitochondrial metabolism and senescence.
Altogether, our results strongly point towards senescence as the dominant dysfunctional T-cell state in CLL patients, with impaired mitochondrial metabolism at its basis. The distinctive mechanisms leading to T-cell senescence, as opposed to classical exhaustion, underscore the necessity for different strategies to reinvigorate T cells in the context of immunotherapy. Therefore, interventions aimed at ameliorating T-cell dysfunction in CLL should prioritize enhancement of mitochondrial metabolism to attenuate DNA damage and the induction of senescence. This would be especially beneficial to improve the fitness of autologous CAR-T cells for these patients.
Disclosures: Kater: Genentech, Inc.: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Astra Zeneca: Consultancy, Honoraria, Research Funding; LAVA: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding.
See more of: Oral and Poster Abstracts