-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

698 The SIX1 homeobox Gene Is a Novel Therapeutic Target in CALM-AF10 Leukemogenesis

Program: Oral and Poster Abstracts
Type: Oral
Session: 618. Acute Lymphoblastic Leukemia: Biology, Cytogenetics, and Molecular Markers in Diagnosis and Prognosis I
Hematology Disease Topics & Pathways:
Biological Processes, molecular interactions, signal transduction
Monday, December 7, 2020: 2:30 PM

Waitman K. Aumann, MD, MS1, Catherine P. Lavau, DVM, PhD2*, Amanda Harrington, MD3*, Donald Tope4*, Amanda E. Conway, PhD5*, Hengbo Zhou, PhD6*, Heide Ford, PhD7* and Daniel S. Wechsler, MD, PhD1

1Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA
2Department of Neurosurgery, Duke University Medical Center, Durham, NC
3Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA
4Department of Pediatrics, Emory University, Atlanta, GA
5NIH/NIEHS, Research Triangle, NC
6Massachusetts General Hospital, Boston, MA
7Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO

Background: The CALM-AF10 translocation is found 5-10% of T-cell acute lymphoblastic leukemias (T-ALL), and a subset of acute myeloid leukemias (AML). CALM-AF10 leukemias are characterized by elevated expression of proleukemic HOXA genes. Since HOXA genes are difficult to target, we hypothesized that identification of non-HOXA CALM-AF10 effector genes could potentially yield novel therapeutic targets. To discover novel CALM-AF10-regulated genes, we took advantage of our prior observation that the nuclear export factor CRM1/XPO1 tethers CALM-AF10 to HOXA genes by interacting with a nuclear export signal within CALM. Using microarrays, we identified a set of genes that showed decreased expression in response to the CRM1 inhibitor, Leptomycin B (LMB), similar to Hoxa genes, in murine CALM-AF10 leukemia cells. Then using RNA-sequencing, we discovered a set of genes increased in murine hematopoietic stem cells transduced with CALM-AF10. There were 11 genes that were both decreased in response to LMB and increased in response to CALM-AF10, which included the Hoxa gene cluster, as well as Six1. Similar to HOXA genes, SIX1 is a homeobox gene that is associated with embryogenesis and is quiescent post-embryologically. Additionally, SIX1 and its cofactor EYA2 have been found to be overexpressed in numerous solid tumors, and inhibitor of the SIX1/EYA2 complex has recently been described. While there is evidence of a role for SIX1 in solid tumors, its role in leukemias has not been explored. Objective: To evaluate the role of SIX1 in CALM-AF10 leukemias. Design/Methods: RT-qPCR and Chromatin Immunoprecipitation (ChIP) were performed using bone marrow progenitors transduced with CALM-AF10 or an empty vector, with and without LMB. Methylcellulose colony assays assessed the ability of SIX1 to enhance self-renewal of hematopoietic progenitors. An inhibitor of the Six1/Eya2 interaction (compound 8430) was used to evaluate cell proliferation. Downstream targets of Six1 were evaluated using RT-qPCR in CALM-AF10 cells treated with Six1/Eya2 inhibitor (8430). Results: RT-qPCR confirmed overexpression of SIX1 in CALM-AF10 leukemia cells, and showed decreased SIX1 expression in the presence of LMB. Furthermore, ChIP revealed that CALM-AF10 binds to the SIX1 gene locus. Overexpression of SIX1 in fetal liver progenitors was sufficient to increase self-renewal potential. The 8430 Six1/Eya2 inhibitor slowed cell growth in CALM-AF10 cells compared to cells treated with DMSO alone. Finally, downstream targets such as Slc2a1, Cdk2, and Cyclina2 were decreased in 8430-treated CALM-AF10 leukemia cells. Conclusions: The SIX1 homeobox gene is highly expressed during embryogenesis, and its expression is silenced post-embryogenesis. Through an initial unbiased screen, we discovered that Six1 may play a role in CALM-AF10 leukemogenesis. We have determined that Six1 expression is upregulated in the presence of CALM-AF10. Further, we have shown a potential oncogenic role for Six1, as it was able to increase the self-renewal potential of hematopoietic progenitors. The role of Six1 in CALM-AF10 leukemia is further supported by the ability of a SIX1/EYA2 inhibitor to slow the growth of CALM-AF10 leukemia cells and decrease the expression of downstream targets of SIX1. These observations suggest that Six1 plays a pathogenic role in leukemogenesis, and may be a novel therapeutic target in CALM-AF10 leukemias.

Disclosures: No relevant conflicts of interest to declare.

*signifies non-member of ASH