-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

1652 Myelodysplastic Syndrome (MDS)-Determining Clonal Events at Presentation of Aplastic Anemia (AA)

Myelodysplastic Syndromes – Basic and Translational Studies
Program: Oral and Poster Abstracts
Session: 636. Myelodysplastic Syndromes – Basic and Translational Studies: Poster I
Saturday, December 5, 2015, 5:30 PM-7:30 PM
Hall A, Level 2 (Orange County Convention Center)

Eiju Negoro, MD, PhD1*, Naoko Hosono, MD, PhD.2*, Wenyi Shen, MD3*, Tetsuichi Yoshizato, MD4*, Bhumika J. Patel1*, Cassandra Hirsh, BSc5*, Bartlomiej Przychodzen, MSc1*, Michael J. Clemente1*, Reda Z. Mahfouz, MD/PhD1, Aleksandra Wodnar-Filipowicz, PhD6*, Hideki Makishima, MD, Ph.D.4, Seishi Ogawa, MD, Ph.D.4, Mikkael A. Sekeres, MD, MS7 and Jaroslaw P. Maciejewski, MD, Ph.D.5

1Department of Translational Hematology and Oncology Research, Taussing Cancer Institute, Cleveland Clinic, Cleveland, OH
2Department of Hematology and Oncology, University of Fukui, Fukui, Japan
3The First Affilliated Hospitla of Nanjing Medical University, Nanjing, China
4Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
5Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
6University Hospital Basel, Basel, Switzerland
7Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH

Historically, the evolution rate of aplastic anemia (AA) to MDS approaches 15% in 10 yrs; thus, AA can be considered a major predisposition factor for secondary MDS (sMDS). The likely etiology includes expansion of a preexisting clone or truly late clonogenic events.  In both instances, progression can be a result of a clonal escape, but confirmation of the presence of mutant cells at presentation would indicate that initial autoimmune processes may represent a tumor surveillance reaction.   

We studied 326 patients with AA and 47 patients with paroxysmal nocturnal hemoglobinuria (PNH) and identified 36 cases (progression rate: 11% in median follow up of 6 years) that evolved to MDS or AML (median time to progression: 3.2 yrs.; transplanted patients were not censored). Cytogenetic analysis upon progression showed abnormal karyotype in 83% of cases; 7% had complex karyotype and -7/del(7q) was present in 62% of cases. The presence of a PNH clone was detected in 17% of cases that transformed to sMDS vs. 35% in non-progressors (P=.1).   For comparison, we have also analyzed primary de novo cases of MDS (pMDS) with (N=94) and without (N=557) -7/del(7q). In contrast to sMDS, -7/del(7q) was present in 14.4% of cases in pMDS.

Because sMDS following AA or PNH included a high proportion of patients with -7/del(7q), we compared sMDS with -7/del(7q) to pMDS with -7/del(7q) for coexisting mutational events. Mutations in RUNX1, CBL, SETBP1 and ASXL1 appeared to be more frequent in sMDS vs. pMDS (28.6% vs. 2.1%, 21.4% vs. 2.1%, 21.4% vs. 5.3%, 21.4% vs. 10.6%, P=.003, P=.02, P=.07, P=.37, respectively).  In contrast, TP53 and DMT3A were more common in pMDS (7.1% for sMDS vs. 17%, 0% for sMDS vs. 8.5%, P=.69, P=.59). Similarly, there were several other distinctive differences between all sMDS and pMDS irrespective of the cytogenetics:  mutations in SF3B1, SRSF2, NPM1, DNMT3A were common in primary AML but entirely absent from cases after AA; mutations in RUNX1 and SETBP1 appeared to be more frequent in sMDS vs. pMDS (26.3% vs. 8.3%, 21.1% vs. 3.2%, 15.8% vs. 3.9%, P=.03, P=.005, respectively).

Whole exome NGS was performed after progression, with confirmed somatic mutations subsequently tracked back by targeted deep NGS applied to serial samples starting at initial presentation. Confirmed mutational events and chromosomal aberrations were found in 19/36 patients with sMDS; 17/19 cases of sMDS had at least 1 confirmed somatic mutation.   Remarkably, in retrospective analysis in 6/7 cases studied serially, at least one of the identified mutations was detectable at presentation when deep targeted sequencing (depth 5,000~20,000 reads) was performed.  In 5 of these cases the alterations appeared to be ancestral events for sMDS evolution. When anadditional 77 AA or PNH cases were studied by deep sequencing, somatic mutations were present in 48% of AA patients at presentation.  Detection of clonal events at presentation was associated with an increased risk of subsequent MDS evolution (14/37 mutant cases vs. 3/40 nonclonal cases evolved, P=.002). Mutations found at both initial presentation and upon evolution were suggestive of a slow expansion of previously cryptic clones (ASXL1, CUX1, TET2, CBL, RUNX1, and SETBP1).  Patients with these genes (n=18) had worse overall survival compared to patients without these mutations (P=.03). To assess the potential impact of immunosuppressive therapies (IST), we also investigated a subset (out of 77) of 53 patients (39 responders and 14 refractory cases) following IST. Clonal somatic events were identified in 27 of them, but there was no association between the response to IST and somatic mutations at presentation.

Our results demonstrate that while subclonal mutations indicative of oligoclonal hematopoiesis are frequent in AA, the presence of permissive ancestral somatic events at the outset of AA predisposes patients to sMDS, a feature that had diagnostic and prognostic implications.

Disclosures: Sekeres: TetraLogic: Membership on an entity’s Board of Directors or advisory committees ; Celgene Corporation: Membership on an entity’s Board of Directors or advisory committees ; Amgen: Membership on an entity’s Board of Directors or advisory committees .

*signifies non-member of ASH