-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

553 LMO2 Regulates DNA Replication in Hematopoietic Cells

Oncogenes and Tumor Suppressors
Program: Oral and Poster Abstracts
Type: Oral
Session: 603. Oncogenes and Tumor Suppressors: Transcriptional Control and Dysregulation in Hematopoiesis and Leukemia
Monday, December 7, 2015: 10:30 AM
W308, Level 3 (Orange County Convention Center)

Marie-Claude Sincennes1*, Magali Humbert1*, Benoit Grondin1*, Christophe Cazaux2*, Veronique Lisi1*, Nazar Mashtalir3*, EL Bachir Affar3*, Alain Verreault1* and Trang Hoang1

1Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
2Cancer Research Center of Toulouse, Toulouse, France
3Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada

Oncogenic transcription factors are major drivers in acute leukemias. These oncogenes are believed to subvert normal cell identity via the establishment of gene expression programs that dictate cell differentiation and growth. The LMO2 oncogene, which is commonly activated in T-cell acute lymphoblastic leukemia (T-ALL), has a well-established function in transcription regulation. We and others previously demonstrated that LMO1 or LMO2 collaborate with the SCL transcription factor to activate a self-renewal program that converts non self-renewing progenitors into pre-leukemic stem cells. Here we demonstrate a non-transcriptional role of LMO2 in controlling cell fate by directly promoting DNA replication, a hitherto unrecognized mechanism that might also account for its oncogenic properties.

To address the question whether LMO2 controls other functions via protein-protein interactions, we performed a proteome-wide screen for LMO2 interaction partners in Kit+Lin- cells. In addition to known LMO2-interacting proteins such as LDB1 and to proteins associated with transcription, we unexpectedly identified new interactions with three essential DNA replication enzymes, namely minichromosome 6 (MCM6), DNA polymerase delta (POLD1) and DNA primase (PRIM1). First, we show that in Kit+ hematopoietic cells (TF-1), all components of the pre-replication complex co-immunoprecipitate with LMO2 but not with SCL, suggesting a novel SCL-independent function. Second, LMO2 is recruited to DNA replication origins in these cells together with MCM5. Third, tethering LMO2 to synthetic DNA sequences is sufficient to transform these into origins of replication. Indeed, we show by DNA capture that LMO2 fused to the DNA binding domain of GAL4 is sufficient to recruit DNA replication proteins to GAL4 binding sites on DNA. In vivo, this recruitment is sufficient to drive DNA replication in a manner which is dependent on the integrity of the GAL4 binding sites. These results provide unambiguous evidence for a role of LMO2 in directly controlling DNA replication.

Cell cycle and cell differentiation are tightly coordinated during normal hematopoiesis, both during erythroid differentiation and during thymocyte development. We next addressed the functional importance of LMO2 in these two lineages. Erythroid cell differentiation proceeds through different stages from the CD71+Ter119- to the CD71-Ter119+. These stages are also distinguishable by morphological criteria. We observe that LMO2 protein levels directly correlate with the proportion of cells in S phase, i.e. both LMO2 levels and the proportions of cycling cells decrease with terminal erythroid differentiation. Strikingly, lowering LMO2 levels in fetal liver erythroid progenitors via shRNAs decreases the proportion of cells in S phase and arrests Epo-dependent cell growth. Despite a drastic decrease in the numbers of erythroid precursors, these cells differentiate readily to the CD71-Ter119+ stage. Therefore, LMO2 levels dictate cell fate in the erythroid lineage, by favoring DNA replication at the expense of terminal maturation.

Conversely, ectopic expression in thymocytes induces DNA replication and drives cells into cell cycle, causing differentiation blockade. Our results define a novel role for the oncogenic transcription factor LMO2 in directly promoting DNA synthesis. To our knowledge, this is the first evidence for a non-transcriptional function of the LMO2 oncogene that drives cell cycle at the expense of differentiation, favouring progenitor cell expansion in the thymus, and causing T-ALL when ectopically expressed in the T lineage. We propose that the non-transcriptional control of DNA replication uncovered here for LMO2 may be a more common function of oncogenic transcription factors than previously appreciated.

Disclosures: No relevant conflicts of interest to declare.

Previous Abstract | Next Abstract >>

*signifies non-member of ASH