Program: Oral and Poster Abstracts
Session: 501. Hematopoietic Stem and Progenitor Biology: Poster II
Rationale: The differentiation roadmap taken by human hematopoietic stem cells (HSCs) is fundamental to our understanding of blood homeostasis, hematopoietic malignancies and regenerative medicine.
Results: We mapped the cellular origins of My, Er and Mk lineages across three timepoints in human blood development: fetal liver (FL), neonatal cord blood (CB) and adult bone marrow (BM). Using a new cell-sorting scheme based on markers linked to Er and Mk lineage specification (CD71 and BAH1), we found that previously described populations of multipotent progenitors (MPPs), CMPs, and megakaryocyte-erythroid progenitors (MEPs) were considerably heterogeneous and could be further purified beyond current definitions. Nearly 3000 single cells from 11 cellular subsets from the CD34+ compartment of FL, CB and BM (33 subsets in total) were evaluated for their My, Er and Mk lineage potential using an optimized single-cell assay.
In FL, the ratio of cells with multilineage versus unilineage potential remained constant in both the stem cell (CD34+CD38-) and progenitor cell (CD34+CD38+) enriched compartments. By contrast in BM, nearly all multipotent cells were restricted to the stem cell compartment, whereas unilineage progenitors dominated the progenitor cell compartment. Oligopotent progenitors were only a negligible component of the human blood hierarchy of adult BM leading to the conclusion that multipotent cells differentiate into unipotent cells directly.
Mk-Er activity predominately arose in the stem cell compartment at all developmental timepoints. In CB and BM, most Mks emerged as part of mixed clones from HSCs/MPPs, indicating that Mks directly branch from a multipotent cell and not from oligopotent progenitors like CMP. In FL, a striking 80% of single-cell clones with Mk activity were derived from a novel progenitor in the stem cell compartment, although less potent Mk progenitors were also present in the progenitor compartment. Interestingly, in a hematological condition of HSC loss (aplastic anemia), Mk-Er but not My progenitors were more severely depleted, pinpointing a close physiological connection between HSC and the Mk-Er lineage.
Conclusion: Our data indicate that there are distinct roadmaps of blood differentiation across human development. Prenatally, Mk-Er lineage branching occurs throughout the cellular hierarchy. By adulthood, both Mk-Er activity and multipotency are restricted to the stem cell compartment, whereas the progenitor compartment is composed of unilineage progenitors forming a ‘two-tier’ system, with few intervening oligopotent intermediates.
Disclosures: No relevant conflicts of interest to declare.
See more of: Hematopoietic Stem and Progenitor Biology
See more of: Oral and Poster Abstracts
*signifies non-member of ASH