Program: Oral and Poster Abstracts
Session: 302. Vascular Wall Biology, Endothelial Progenitor Cells and Platelet Adhesion: Poster II
Methods: Commercial human umbilical vein endothelial cells (HUVECs) were used. Cells were stimulated with histamine and analyzed under flow conditions to assess the quantity of VWF strings in the presence of soluble recombinant A2 domain, soluble recombinant vimentin, or anti-vimentin antibodies versus control buffer. VWF strings were visualized by tagging with commercial fluorescent-conjugated antibody. We also evaluated VWF string adherence to the endothelium of intact pressurized cerebral arteries from vimentin knockout mice versus wild-type (WT) mice ex vivo. Cerebral middle cerebral artery and parenchymal arterioles from mice were isolated, pressurized, and luminally perfused in a perfusion chamber. Histamine was applied to activate the endothelium and elicit VWF string formation. The negative control was an irrelevant isotype antibody. After histamine treatment, the arteries/arterioles were processed for VWF immunofluorescence to assess VWF string formation. VWF strings were quantified as length normalized to endothelial surface area.
Results: As expected, HUVECs expressed surface vimentin as determined using flow cytometry and confocal microscopy. The presence of either soluble A2 or soluble vimentin significantly reduced the amount of VWF string formation from histamine-stimulated HUVECs in comparison to control. In some experiments, anti-vimentin antibodies decreased VWF string formation but findings were not significant. Vascular endothelial cells from vimentin knockout mice failed to form VWF strings after histamine stimulation in comparison to vimentin WT mice.
Conclusions: These novel findings show that extracellular vimentin appears to play a role in VWF string formation likely via A2 domain binding. Further studies are necessary to shed light on the intricate pathways regulating VWF-mediated platelet adhesion. Our long term goals are to understand the novel interactions between vimentin and VWF strings in governing hemostasis and thrombosis.
Disclosures: No relevant conflicts of interest to declare.
See more of: Vascular Wall Biology, Endothelial Progenitor Cells and Platelet Adhesion
See more of: Oral and Poster Abstracts
*signifies non-member of ASH