-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

51 Knockdown (KD) of Mir-126 Expression Enhances Tyrosine Kinase Inhibitor (TKI)-Mediated Targeting of Chronic Myelogenous Leukemia (CML) Stem Cells

Chronic Myeloid Leukemia: Biology and Pathophysiology, excluding Therapy
Program: Oral and Poster Abstracts
Type: Oral
Session: 631. Chronic Myeloid Leukemia: Biology and Pathophysiology, excluding Therapy: Targeting Leukemic Stem Cells in Chronic Myeloid Leukemia
Saturday, December 5, 2015: 10:00 AM
W340, Level 3 (Orange County Convention Center)

Bin Zhang, PhD1*, Ling Li, PhD2, Ching-Cheng Chen, PhD2, Anthony S. Stein, MD3, Haris Ali, MD4*, David S. Snyder, MD3, Allen Lin5*, Adrienne Dorrance, PhD6*, Piotr Swiderski, PhD7*, Ravi Bhatia, MD8*, Danilo Perrotti, MD, PhD9*, Stephen J. Forman, MD10, Ya-Huei Kuo, PhD3, Marcin Kortylewski, PhD7* and Guido Marcucci, MD2*

1Division of Hematopoietic Stem Cell & Leukemia, City of Hope National Medical Center, Duarte, CA
2Division of Hematopoietic Stem Cell and Leukemia Research of Beckman Research Institute, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
3Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
4City of Hope, Duarte, CA
5Division of Hematopoietic Stem Cell and Leukemia Research of Beckman Research Institute, Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA
6Ohio State University, Columbus, OH
7City of Hope National Medical Center, Duarte, CA
8University of Alabama Birmingham, Birmingham, AL
9University of Maryland, Baltimore, MD
10Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA

BCR-ABL tyrosine kinase inhibitors (TKI), although highly effective in inducing remission and improving survival in CML patients, fail to eliminate leukemia stem cells (LSC), which remain a potential source of relapse. The long-term goal of our research is to improve the understanding of molecular mechanisms regulating LSC growth and develop effective mechanism-based therapeutic strategies to target LSC in CML. MicroRNAs (miRNAs) are short non-coding RNAs that regulate translation of target protein-coding messenger RNAs (mRNAs) and levels of the corresponding encoded proteins. Among distinct miRNAs, miR-126-3p (miR-126) is expressed in normal hematopoietic stem cells (HSCs) and early hematopoietic progenitor cells (HPCs) and plays a pivotal role in restraining cell-cycle progression of HSC in vitro and in vivo (Cell Stem Cell, 2012). We previously reported that miR-126 expression varies among AML patients; higher level of miR-126 associated with poor outcome, a LSC-associated gene expression signature and increased LSC quiescence; and miR-126 down-regulation decreased LSC self-renewal activity in serial transplant experiments (Leukemia, 2015). Here, we report that the more primitive LSK (Lin-Sca-1+Kit+) from SCL-tTA-BCR/ABL mouse model of CML had higher miR-126 expression compared to more differentiated subpopulations, i.e. common myeloid progenitors (CMP) (3.2 fold) and granulocyte-macrophage progenitors (GMP) (6.4 fold). Among LSK subpopulations, LSC (Flt3-CD150+CD48- LSK) demonstrated the highest miR-126 levels (P<0.01). Furthermore, quiescent (Hoechst-Pyronin-) LSC demonstrated higher miR-126 expression (2.6 fold, p<0.01), generated significantly higher long-term engraftment of donor CML cells in recipient mice (58.6±4.4% vs 33±3.4% in BM at 16 wks after transplanted with 100 LSC/mouse, p=0.003) and enhanced leukemogenic capacity (5 out of 9 mice receiving quiescent LSC developed CML within 14 wks after transplantation vs. none of 10 mice receiving proliferating LSC) compared with proliferating (Hoechst+/-Pyronin+) LSC. Human primary untreated chronic phase (CP) CML CD34+CD38- primitive progenitors also showed higher miR-126 expression compared with CD34+CD38+ committed progenitors. KD of miR-126 in LSK cells of CML mouse model and in primary CML CD34+CD38- cells by using either miRZip-126-3p anti-miR lentivirus (System Biosciences) or a novel, myeloid cell-specific CpG-miR-126 oligonucleotide (ODN) inhibitor increased LSC cell-cycle entry as demonstrated by increased Ki67 staining (p<0.05) and EdU labeling (p<0.05), but affected apoptosis only slightly compared to scramble-treated controls. More importantly, miR-126 KD either by lentivirus or CpG-miR-126 ODN inhibitor combined with Nilotinib (NIL) significantly increased apoptosis of LSC compared with NIL alone (34% vs 19%; p=0.01 for lentivirus KD; and 40% vs 35%; p=0.03 for CpG-miR-126 inhibitor KD), resulting in significant reduction of cell growth and colony forming cell (CFC) frequency in methylcellulose progenitor assays. Conversely, enforced miR-126 expression by miR-126 precursor lentivirus (System Biosciences) impaired cell-cycle entry (28% vs 33%; p=0.05) and led to significantly reduced apoptosis (27% vs 19%; P=0.01) in NIL (5µM) treated CML CD34+CD38- cells compared to cells treated with control lentivirus and NIL. We further investigated the effect of miR-126 KD on growth of primary CML LSC and therapeutic response in vivo. CP CML CD34+ cells were cultured with CpG-scrambled RNA or CpG-miR-126 ODN inhibitor (500nM), in the presence or absence of NIL (5µM) for 4 days, and then transplanted into irradiated NSG mice. While the experiment is still ongoing, we have already observed a significantly reduced engraftment in blood at 4 wks in recipient mice receiving cells treated with CpG-miR-126 inhibitor and NIL compared with those receiving cells treated with CpG-scrambled RNA and NIL (0.16±0.03% vs 0.4±0.04%; P=0.01). Final results of this in vivo experiment and in vivo treatment of SCLtTA/BCR-ABL mice with CpG-miR-126 inhibitor and NIL will be reported at the meeting. Altogether, these observations suggest that miR-126 play a role in CML LSC homeostasis and down-regulation of miR-126 may decrease CML LSC quiescence, increase LSC proliferation and in turn enhance their sensitivity to TKI. miR-126 therefore may represent a novel therapeutic target in CML.

Disclosures: Stein: Amgen: Speakers Bureau . Snyder: BMS: Membership on an entity’s Board of Directors or advisory committees ; Ariad: Membership on an entity’s Board of Directors or advisory committees ; Incyte: Membership on an entity’s Board of Directors or advisory committees . Forman: Mustang: Research Funding ; Amgen: Consultancy .

*signifies non-member of ASH