Program: Oral and Poster Abstracts
Session: 501. Hematopoietic Stem and Progenitor Biology: Poster I
Recently it was shown that estrogen signaling plays an important role in regulating proliferation of HSCs (Nature. 505:555-8). Since during development, both male and female fetuses are exposed to the same high level of maternal estrogen, whereas in adults, male and female hematopoietic cells are exposed to different levels of circulating estrogen, we hypothesized that adult (but not fetal) HSPCs from male and female mice might exhibit different phenotypes in response to Igf1r-loss. To test this, we analysed the adult LSK population by separating males and females. Interestingly, we found that in females, but not in males, the LSK population is significantly reduced upon Igf1r-loss. Conversely, a preliminary study in fetal liver CFU assay revealed that both Igf1r-null female and male fetuses exhibited a similar reduction in their CFUs compared to matched WT controls. To understand the female-specific role of IGF/IGF1R signaling in adult HSPCs, we analysed the cell cycle status of HSCs. Similar to the reported observation (Nature. 505:555-8), we found that in WT female adults, there were significantly more Ki67+ cycling LT-HSCs than those in males. Intriguingly, Igf1r-loss significantly reduced the percentage of cycling LT-HSCs in females to a level comparable to that of WT males, but had a neglectable effect on cycling LT-HSCs in males. Administration of estradiol (E2) revealed that in females, E2 injection led to an increase in the percentage of Ki67+ LT-HSCs and this increase was partially abolished when under the Igf1r-null background; in males, E2 injection also increased the percentage of Ki67+ LT-HSCs, although we did not observe a notable reduction in this population when under the Igf1r-null background.
Overall, our data suggest that although IGF/IGF1R signaling is not essential for normal hematopoiesis, it may play a more important role under conditions (e.g., fetal development, pregnancy) when there is a higher demand for the output from the hematopoietic system; in particular, this pathway may play an important role in mediating the effect of estrogen on self-renewal and proliferation of HSPCs.
Disclosures: No relevant conflicts of interest to declare.
See more of: Hematopoietic Stem and Progenitor Biology
See more of: Oral and Poster Abstracts
*signifies non-member of ASH