-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

4436 Tirapazamine As a Strategy to Overcome Hypoxia-Induced Drug Resistance in Multiple Myeloma

Chemical Biology and Experimental Therapeutics
Program: Oral and Poster Abstracts
Session: 802. Chemical Biology and Experimental Therapeutics: Poster III
Monday, December 7, 2015, 6:00 PM-8:00 PM
Hall A, Level 2 (Orange County Convention Center)

Barbara Muz, PhD, MSc1, Pilar De La Puente, PhD1, Micah John Luderer, BS, MS1, Farideh Ordikhani2* and Abdel Kareem Azab, BPharm, PhD1

1Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, MO
2Radiation Oncology, Washington Univeristy in St. Louis, Saint Louis

Introduction: Multiple myeloma (MM) is a lymphoplasmacytic malignancy characterized by the continuous spread of MM cells in and out of the bone marrow (BM). Despite the introduction of novel therapies, cancer patients relapse due to the development of drug resistant cells, which are, at least in part, promoted by hypoxia. Therefore, in this study we aimed to overcome drug resistance in MM by inhibition of the hypoxic responses in these cells. Tirapazamine (TPZ) is a hypoxia-activated pro-drug causing cell apoptosis, which has been shown to improve the outcome of patients with solid tumors when combined with radiotherapy; however, it has not been tested in MM. We used TPZ for the first time in MM to target the drug resistant cancer cells and sensitize them to therapy.

Methods: To test the effect of TPZ on tumor survival in vitro, MM cell lines (MM1.s, H929, OPM1, RPMI8226) were exposed to normoxia (21% O2) or hypoxia (1% O2) for 24 hours with different concentrations of TPZ in order to obtain an IC50, and cell survival was assessed using MTT assay. Also, a combination of bortezomib and carfilzomib with or without TPZ was tested on cell survival. For in vivo study, 5 x 106 MM1s-Luc-GFP cells were injected intravenously (IV) into SCID mice and tumor progression was monitored for 3 weeks by bioluminescent imaging. First, we tested the hypoxic status of mice treated with and without a high-dose bortezomib (1.5mg/kg). Pimonidazole (PIM) was injected intraperitoneally (IP) into mice and 4 hours later BM was harvested, stained with anti-PIM-APC antibody and followed by measuring PIM signal in MM1s-GFP+ cells using flow cytometry. Second, we developed drug resistant cells by treating mice with a high-dose bortezomib (1.5mg/kg), and then treated with (1) bortezomib only (0.5mg/kg; n=3), or (2) bortezomib and TPZ (40mg/kg; n=3), all administered IP sequentially twice a week. The number of residual MM1s-GFP+ cells was calculated by flow cytometry.

Results: We found that TPZ was active in a dose-dependent manner only in hypoxic conditions in MM cell lines. We showed that residual MM cells in the BM after high-dose bortezomib are hypoxic, as demonstrated by PIM staining. The combination of TPZ with bortezomib and carfilzomib resensitized cancer cells to death in hypoxia, overcoming hypoxia-induced drug resistance in vitro. Moreover, TPZ-treatment in combination with bortezomib further decreased residual MM cells in vivo.

Conclusions: We reported that MRD was hypoxic and that TPZ, which was cytotoxic for MM cells only in hypoxic conditions, overcame hypoxia-induced drug resistance in vitro and killed bortezomib-resistant residual MM cells in vivo. This is the first study to show the efficacy of TPZ in MM. This data provides a preclinical basis for future clinical trials testing efficacy of TPZ in MM.

Disclosures: Azab: Selexys: Research Funding ; Karyopharm: Research Funding ; Cell Works: Research Funding ; Targeted Therapeutics LLC: Other: Founder and owner ; Verastem: Research Funding .

*signifies non-member of ASH