-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

4435 Targeting NF-κB with First in Class N-Quinoline Benzenesulfonamides (NQBS) Reveals Potent Activity in Models of Diffuse Large B-Cell Lymphoma (DLBCL)

Chemical Biology and Experimental Therapeutics
Program: Oral and Poster Abstracts
Session: 802. Chemical Biology and Experimental Therapeutics: Poster III
Monday, December 7, 2015, 6:00 PM-8:00 PM
Hall A, Level 2 (Orange County Convention Center)

Matko Kalac, MD, PhD1, Michael Mangone, PhD2*, Alison Rinderspacher, PhD3*, Shi-Xian Deng, PhD3*, Luigi Scotto, PhD4*, Jeremie Vendome, PhD5*, Mukesh Bansal, PhD5*, Andrea Califano, PhD6*, Donald Landry, MD, PhD3* and Owen A. O'Connor, MD, PhD4

1Department of Hematology and Oncology, Columbia University Medical Center, New York, NY
2Department of Medicine and Experimental Therapeutics, Columbia University Medical Center, New York, NY
3Department of Medicine - Nephrology, Columbia University Medical Center, New York, NY
4Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, NY
5Department of Systems Biology, Columbia University Medical Center, New York, NY
6Department of Biomedical Informatics and Joint Centers for Systems Biology, Columbia University, New York, NY

The first two authors contributed equally to this work

Identifying pharmacologic strategies to inhibit the activation of NF-κB and its target genes has been a major research pursuit. To date, no direct inhibitors of the NF-κB subunits have been explored in the clinic. Based on the constitutive activation of NF-κB in diffuse large B-cell lymphoma (DLBCL), we used this disease model to develop drugs targeting NF-κB. Using a fluorescence-based high throughput screening (HTC) approach, a unique N-quinoline-benzenesulfonamide (NQBS) scaffold was identified as potential small molecule inhibitor of the NF-κB pathway.

A confocal microscopy based HTC assay performed in human umbilical vein endothelial cells (HUVEC) identified hit compounds that contained a unique NQBS core structure. The assay screened for compounds that inhibited nuclear translocation of NF-κB subunits in TNFα-induced HUVEC cells. To date over 100 NQBS analogs have been synthesized with varying potency and cytotoxicity in inhibiting growth of DLBCL lines (OCI-Ly10, RIVA, HBL-1 and OCI-Ly3).

Cytotoxicity assays demonstrated that the most potent compounds exhibit IC50s in the 0.5 to 1.5 µM range. These most potent NQBS analogs identified as CU-O42 CU-O47 and CU-O75 were also able to induce apoptosis and caspase activation. Apoptosis was preceded by exclusion of the NF-κB proteins from the nucleus.

To analyze the localization of NF-κB proteins within the cell compartments before and after the treatment with CU-O42, CU-O47 and CU-O75, we used confocal microscopy, electromobility shift (EMSA) and ELISA assays. Control cells tested positive for p50/p65 both within the cytoplasm and the nucleus. Following treatment with CU-O42 NF-κB was sequestered within the cytoplasm of the cell which occurred as early as 3h after exposure. In addition, all three analogs reduced the nuclear levels of NF-κB in a concentration-dependent manner when measured by EMSA and ELISA.

Furthermore, CU-O47 and CU-O75 were able to inhibit TNFα induced luciferase expression in a HEK293T cell model where luciferase is controlled by an NF-κB promoter. A KINOMEscan platform (examining the activity of over 450 different kinases) showed that no NQBS analog screened (CU-O42 and CU-O75) inhibited any of the kinases in the assay. In addition, a proteasome inhibition assay tested negative for trypsin-like and chromotrypsin-like protease activity (CU-O42, CU-O47 and CU-O75). 

Stabilization of the inactive trimer of p50, p65 and IκBα was hypothesized as a potential mechanism of action of CU-O42 and CU-O75 through Internal Coordinate Mechanics (ICM) software. This binding hypothesis was further corroborated by cellular thermal shift assays (CETSA) with an increase of the IκBα melting temperatures (2.5-3°C) in whole cell lysates following rapid (30min) exposure to CU-O42 and CU-O75. Using a genome-wide regulatory network perturbation analysis (DeMAND) based on the RNA-Seq data collected from OCI-Ly10 cells treated with CU-O75, we identified IκBα as one of the potential targets of the compounds. Gene set enrichment analysis demonstrated NF-κB target gene downregulation using IC20 of CU-O75 at 24h (p=0.045).

In vivo experiments were conducted in two models: (1) xenografts with human DLBCL cell lines of both ABC and GC subtype; and (2) myc cherry luciferase mouse model where mice spontaneously develop aggressive lymphomas. In both models, CU-O42 was able to inhibit tumor growth. Interestingly, in the xenograft model, malignant cell growth was inhibited in both ABC (HBL-1) and GC (OCI-Ly1) cells when compared to controls (p=0.01 and p=0.02). However, overall survival of mice with ABC xenografts treated with CU-042 significantly exceeded the survival of mice with GC xenografts (p<0.01) suggesting a more sustainable response in this subtype of disease, consistent with its dependency on NF-κB.

Identification of a unique NQBS scaffold has led to the chemical synthesis of over 100 structural analogs with a potent inhibition on NF-κB nuclear translocation. They display potent activity across a panel of lymphoma cell lines, producing a survival benefit in mice implanted with an ABC-subtype of lymphoma. ICM, CETSA and DeMAND suggest that this is a direct effect mediated on the proteins within the p65/p50/IκBα complex. These findings point to a novel mechanism of action and warrant further research into potential clinical translation of this class of small molecules.

Disclosures: Califano: Thermo Fischer Scientific: Consultancy ; Ipsen pharmaceuticals: Consultancy ; Cancer Genetics Inc: Consultancy ; Therasis Inc: Employment . O'Connor: Spectrum Pharmaceuticals: Consultancy , Honoraria , Research Funding ; Takeda Millennium: Consultancy , Honoraria , Research Funding ; Celgene: Consultancy , Research Funding ; Bristol-Myers Squibb Company: Consultancy ; Novartis: Consultancy , Honoraria ; Seattle Genetics: Consultancy ; Bayer: Consultancy , Honoraria ; Mundipharma: Consultancy , Honoraria , Research Funding ; Acetylon Pharmaceuticals, INC: Consultancy .

*signifies non-member of ASH