Program: Oral and Poster Abstracts
Session: 641. CLL: Biology and Pathophysiology, excluding Therapy: Poster II
CD38-stimulation of primary CLL cells by its ligand CD31 induced a consistent phosphorylation of the tyrosine residue Y352, the first activation site that releases SYK from its autoinhibitory conformation (p<0.001). SYK downstream targets AKT (p<0.05) and ERK (p<0.05) were subsequently induced and prolonged CD38-stimulation increased MCL-1-expression (p<0.05). Concomitant inhibition of SYK with the SYK inhibitor R406 resulted in inhibition of AKT- and ERK-activation (p<0.05 and p<0.01) and prevented upregulation of MCL-1 (p<0.01). Moreover, we observed SYK-dependent enhancement of BCR-signaling after CD38 ligation. Short-term exposure of CLL cells to CD31 led to an increase of ERK-phosphorylation after BCR-engagement by 41.9% (p<0.05). This effect was completely abolished by concomitant R406-treatment (p<0.05). Additionally, we observed a SYK-dependent increase of Ca2+-flux in response to BCR-stimulation after previous CD38 activation. Moreover, preliminary experiments show that prolonged CD38-stimulation led to a SYK-dependent increase of baseline Ca2+-flux in CLL cells, indicating a potential involvement of CD38 in autonomous BCR-signaling. CD38 acts as an enhancer of migratory stimuli in CLL cells. We therefore analysed, whether SYK is also involved in this interaction process. CXCL12-dependent migration was increased by CD38 stimulation with the agonistic CD38 antibody IB4 by 28.3% (p=0.12). Treatment of CLL cells with R406 completely inhibited IB4-mediated migration (p<0.01). The expression of CD38 is regulated by a variety of mechanisms, including CD40 ligation. SYK is involved in CD40 signaling. We therefore tested, whether SYK-inhibition affects CD38-expression. Stimulation of CLL cells with recombinant CD40L resulted in a significant increase of CD38-expression (p<0.05). This effect was reversed by concomitant SYK-inhibition (p<0.01). In addition, we observed marked down-regulation of CD38 surface-expression (p<0.05) and mRNA-expression (p<0.05) for CLL cells treated with SYK-inhibitors R406 or P505-15 compared to vehicle control. This effect is at least partly based on transcriptional inhibition of CD38-regulators NF-kB (p<0.05) and E2A (p<0.05). Finally, we observed a clear correlation between CD38 expression on CLL cells and SYK-inhibitor efficacy (p<0.01).
In conclusion, our data show that SYK acts as a central downstream effector of CD38 signaling regulating survival-, proliferation-, and migration pathways in CLL and also functions as a strong regulator of CD38 expression. The interaction of CD38 and SYK involves the BCR pathways, where CD38 enhances the response to BCR-stimulation and, moreover, may act as an enhancer of autonomous BCR-signaling in CLL. Additionally, the CD38-SYK interaction involves BCR-independent microenvironmental pathways as shown for CD40 and CXCL12. CD38 expression not only serves as a negative prognostic marker but has also been shown to possess biological significance in CLL. We therefore propose that disruption of the CD38-SYK axis may represent a promising therapeutic option in CLL.
Disclosures: No relevant conflicts of interest to declare.
See more of: CLL: Biology and Pathophysiology, excluding Therapy
See more of: Oral and Poster Abstracts
*signifies non-member of ASH