Program: Oral and Poster Abstracts
Session: 603. Oncogenes and Tumor Suppressors: Poster III
Methods: The WDR5 expression was determined by qPCR in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) patients. The genome-wide binding profiling of WDR5 and H3K4me3 was obtained by ChIP-seq. The effect of WDR5 on its target gene expression, cell proliferation and apoptosis was observed by qPCR, WST-1 cell proliferation assay and Annexin V-PE staining following the flow cytometry analysis, respectively, in leukemic cells with WDR5 shRNA knockdown
Results: WDR5 expression is significantly increased in adult ALL and AML compared to that of normal bone marrow control. WDR5 high expression is associated with high risk factors in the patients. Also, its high expression is associated with MLL1 high expression; particularly the patients with WDR5 high expression plus MLL1 high expression has poor complete remission (CR) rate. We further identified the global genomic binding of WDR5 in RS4:11 ALL and THP-1 AML cells by ChIP-seq and detected more than 2000 binding peaks in the two leukemia cell lines. We also examined global H3K4me3 peaks, analyzed the correlation of WDR5 peaks with H3K4me3 peaks and found the genomic co-localization of WDR5 binding with H3K4me3 enrichment. Moreover, WDR5 knockdown by shRNA suppressed the cell proliferation, induced apoptosis, inhibited the expression of WDR5 targets on oncogenesis and anti-apoptosis, blocked the H3K4me3 enrichment on the promoter of these targets. We also observed the positive correlation of WDR5 expression with its targets in B-ALL and AML cohort.
Conclusion: WDR5 has oncogenic effect and WDR5-mediated H3K4 methylation plays important role in the leukemogenesis
Disclosures: No relevant conflicts of interest to declare.
See more of: Oncogenes and Tumor Suppressors
See more of: Oral and Poster Abstracts
*signifies non-member of ASH