Program: Oral and Poster Abstracts
Type: Oral
Session: 508. Bone Marrow Failure: Attack on the Clones – Hematopoietic Stem/Progenitor Cell Defects
Methods: We performed in vitro colony-forming assays using primary FA patient- derived bone marrow CD34+ cells which were either transduced with shRNA targeting SMAD3 or treated with the anti-human TGF-β neutralizing antibody GC1008. FA-like HSPCs were generated by stably knocking down FANCD2 with lentivirus encoded shRNA in primary human cord blood CD34+ cells. An in vivo engraftment assay was performed by transplanting the FA-like HSPCs into irradiated NSG mice.
Results: The primary human FA bone marrow cells displayed elevated mRNA expression of multiple TGF-β pathway components. The TGF-β pathway inhibition, by knockdown of SMAD3 or anti-human TGF-β neutralizing antibody GC1008, rescued the in vitro clonogenic defects of primary CD34+ cells from bone marrow of five different FA patients. Similarly, the TGF-β pathway disruption by depletion of SMAD3 or GC1008 antibody in primary FA-like HSPCs, also rescued their clonogenic defect, and partially restored genotoxic stress-induced growth inhibition. Further, as the very low number of CD34+ cells in FA patients did not allow efficient xenograft assay to analyze in vivo clonogenicity, we performed a surrogate in vivo xenograft assay using FA-like primary CD34+ cells. Importantly, blockade of the TGF-β pathway by GC1008 antibody treatment enhanced the engraftment potential of primary FA-like CD34+ cells in vivo. Collectively, these results demonstrated that increased TGF-β pathway signaling impairs the hematopoietic function of primary human FA HSPCs.
Conclusions: The TGF-β pathway signaling is increased in primary FA patient-derived hematopoietic cells and blockade of this pathway can restore the function of human FA-deficient primary HSPCs. The TGF-β signaling pathway-mediated growth suppression may account, at least in part, for bone marrow failure in FA. This work suggests that the TGF-β signaling pathway provides a novel therapeutic target for the treatment of bone marrow failure in FA.
Disclosures: No relevant conflicts of interest to declare.
See more of: Bone Marrow Failure
See more of: Oral and Poster Abstracts
*signifies non-member of ASH