-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

246 A Short Pulse of Prostaglandin E2 (PGE2) Induces Long Term Chromatin Changes in Hematopoietic Stem Cells Leading to Increased Self-Renewal and EngraftmentClinically Relevant Abstract

Hematopoietic Stem and Progenitor Biology
Program: Oral and Poster Abstracts
Type: Oral
Session: 501. Hematopoietic Stem and Progenitor Biology: The Clone Wars
Sunday, December 6, 2015: 1:15 PM
W308, Level 3 (Orange County Convention Center)

Eva M Fast, PhD1,2*, Ellen M Durand, PhD2*, Audrey Sporrij1*, Leslie Ojeaburu1*, Rebecca Maher2*, Vera Binder, MD2,3*, Song Yang, PhD2*, Yi Zhou, Ph.D2* and Leonard I. Zon, M.D1,2

1Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
2Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston Children's Hospital/Harvard Medical School, Boston, MA
3Department of Hematology and Oncology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany

Hematopoietic stem cells (HSCs) offer promising treatment options for many blood diseases. We have previously identified Prostaglandin E2 (PGE2), a small molecule that increased HSC numbers in the zebrafish embryo. In an adult mammalian transplantation setting a two hour treatment significantly enhanced HSC engraftment. Currently PGE2 is being tested in a phase 2 clinical trial to improve cord blood transplants. To better understand PGE2 effect on HSCs mouse multipotent progenitors (MPP), short term (ST) HSCs, and long term (LT) HSCs were isolated via FACS and given a two hour pulse of PGE2 followed by a competitive transplantation assay. Surprisingly, PGE2 treatment mainly affected ST-HSCs by dramatically prolonging their ability to contribute to peripheral blood. The effect of the two hour treatment persisted through secondary competitive transplants in which robust peripheral blood chimerism of ST-HSCs was evident even 1.5 years after having been exposed to the drug. To elucidate underlying molecular changes gene expression right after PGE2 treatment as well as in ST-HSCs after transplantation was assessed. PGE2 target genes were divided into two categories; “transiently induced” and “permanently induced” genes. Most of the transcripts upregulated two hour after PGE2 treatment were “transiently induced” meaning that they did not continue to be differentially expressed after transplantation. In contrast, a few transcripts including chemokines such as Cxcl2, Cxcl3, members of the Fos gene family as well as Nr4a1, 2 and 3 were both upregulated right after PGE2 treatment as well as in ST-HSCs after transplantation. We classified these genes as “permanently induced". ATAC (Assay for Transposase-Accessible Chromatin)-seq analysis of the transplanted PGE2 treated cells indicated that these “permanently induced” genes maintained a distinctly open chromatin profile in both promotor and enhancer regions, whereas the “transiently induced” genes did not. Gene expression in human CD34+ cells included a signature implying CREB as the main transcription factor responsible for the acute PGE2 response. Phospho-FACS in mouse ST-HSCs and Western-blot analysis in human CD34+ cells confirmed a significant increase in CREB phosphorylation after PGE2 stimulation. Chromatin immunoprecipitation (ChIP)-seq analysis of pCREB was able to identify specific genomic regions where pCREB is recruited to after PGE2 treatment. Compared to unstimulated CD34+ cells an increased binding of pCREB could be detected in promotor regions near transcription start sites. In addition over 90% of de-novo pCREB binding occurred in intergenic and intronic regions. To determine the activation state of these putative enhancers changes in the histone mark H3K27ac and open chromatin state (via ATAC-seq) were assessed after PGE2 treatment. The data suggest that PGE2-induced pCREB binding correlates with remodeling of chromatin already after two hours of drug treatment. Furthermore chromatin sites opened by PGE2 were significantly enriched for the CREB motif both in human CD34+ cells acutely after treatment as well as in mouse ST-HSCs 1.5 years after transplant. In summary this work shows that a two hour treatment with PGE2 is sufficient to confer long-term engraftment properties to ST-HSCs. PGE triggers a chromatin remodeling event through CREB that can permanently alter epigenetic state and gene expression of ST-HSCs. Understanding the self-renewal network induced by PGE2 will not only enrich current clinical applications targeted at increasing engraftable HSC numbers but also further basic understanding of HSC self-renewal.

Disclosures: Zon: FATE Therapeutics: Employment , Equity Ownership , Membership on an entity’s Board of Directors or advisory committees , Other: Founder ; Scholar Rock: Employment , Equity Ownership , Membership on an entity’s Board of Directors or advisory committees , Other: Founder .

<< Previous Abstract | Next Abstract

*signifies non-member of ASH