Program: Oral and Poster Abstracts
Session: 641. CLL: Biology and Pathophysiology, excluding Therapy: Poster II
Methods: CLL patient samples were evaluated for pathway activation in the presence and absence of ACP-196 using phospho-protein immunoblotting. Helper T-cell (Th) skewing assays were performed using purified naive CD4+ T-cells from C57BL/6, Itk knock out (KO) and Itk/Txk double KO mice in the presence ACP-196 or ibrutinib. CD8+ T-cell activity was assessed by cytolytic activity (CTL) assays using T-cells isolated from C57BL/6 mice. The CTL response was initiated with various effector:T-cell ratios using C57BL/6 T-cells and murine BALB/c lymphoblasts. To evaluate NK-cell ADCC function, standard chromium release assays were done using purified NK-cells isolated from healthy volunteer peripheral blood mononuclear cells and cultured with obinutuzumab-coated (10 µg/mL) CLL cells in the presence and absence of ACP-196. Immunoblotting of H460 lung cancer cells for phospho-EGFR was used to evaluate the effect of ACP-196 on EGFR signaling.
Results: ACP-196 treatment of primary human CLL cells showed a dose-dependent (0.01μM-1μM) decrease in p-BTK (Y223), p-ERK (T202/Y204) and p-AKT (T308) and p-IκB-α (S32), without impact on total protein levels. These findings demonstrate ACP-196 inhibits autophosphorylation of BTK as well as down-stream effectors of BCR signaling.
Phospho-protein immunoblotting of primary human T-cells and Jurkat cells showed that ACP-196 does not inhibit T-cell receptor signaling molecules downstream of ITK and TXK such as IκBα, NFAT, or JunB. In in vitro helper T cell skewing assays, ACP-196, unlike ibrutinib, showed no effect on differentiation of Th subsets (Th1/Th2/Th17) or regulatory T cells (Tregs). The effect of ibrutinib on Th and Treg differentiation was similar to that observed in cells from Itk KO and Itk/Txk KO mice. In addition, ACP-196 had no effect on CD8+ T-cell viability or cytotoxicity as compared with ibrutinib-treated CD8+ T cells (46% and 36% reduction, respectively).
In the in vitro ADCC assay, ACP-196 had no effect on NK cell function (chromium release of 34.8% vs 39.6% for the vehicle control). Lastly, at clinically relevant concentrations ACP-196 did not attenuate autophosphorylation of EGFR in H460 lung epithelial cells demonstrating no effect of ACP-196 on EGFR signaling.
Conclusions: ACP-196 selectively inhibits BTK and BCR signaling at pharmacologic concentrations without off-target effects on T-cells, NK-cells and lung epithelial cells. ACP-196 is currently in Phase 3 trials for the treatment of CLL (ClinicalTrials.gov NCT0247568 and NCT02477696).
This work was supported by the NIH NCI R01CA197870 and Acerta Pharma.
Disclosures: Gulrajani: Acerta Pharma: Employment . Covey: Acerta Pharma BV: Employment , Equity Ownership , Patents & Royalties . Kaptein: Acerta Pharma: Employment . Van Lith: Acerta Pharma: Employment . Izumi: Acerta Pharma: Employment . Hamdy: Acerta Pharma BV: Employment , Equity Ownership , Membership on an entity’s Board of Directors or advisory committees , Patents & Royalties . Ulrich: Acerta Pharma: Employment . Lannutti: Acerta Pharma: Employment . Johnson: Acerta Pharma: Research Funding .
See more of: CLL: Biology and Pathophysiology, excluding Therapy
See more of: Oral and Poster Abstracts
*signifies non-member of ASH