Program: Oral and Poster Abstracts
Type: Oral
Session: 622. Non-Hodgkin Lymphoma: Biology, excluding Therapy: Deregulated Signaling Mechanisms in Lymphoid Malignancies
Cyclic-AMP (cAMP) is a pervasive second messenger that in immune cells exerts primarily negative effects, including suppression of proximal B or T cell receptor signaling and induction of apoptosis. In immune cells, cAMP signaling is terminated by phosphodiesterase 4 (PDE4). Earlier, we identified PDE4B in an outcome prediction signature of DLBCL and showed subsequently that its inhibition had anti-lymphoma properties. cAMP activity is also highly contextualized and it was recently suggested to attenuate vessel development in non-neoplastic cell models. Thus, we speculated that high PDE4B expression/activity, by abrogating cAMP signaling, could modulate angiogenesis in DLBCL.
To examine this idea, we first used a panel of DLBCL cell lines and found that cAMP suppressed VEGF expression (mRNA) and secretion (protein) in PDE4B-low but not in PDE4B-high DLBCLs. In human umbilical vein endothelial cell (HUVEC) tube formation assays, we noted that conditioned media from PDE4B-high DLBCLs were significantly more angiogenic than those from PDE4B-low models. To isolate the role of PDE4B in this process, we used genetic and pharmacological models. Stable ectopic expression of PDE4B blocked the anti-angiogenic properties of cAMP, whereas a siRNA-mediated PDE4B knockdown, or exposure to the FDA-approved PDE4 inhibitor Roflumilast, suppressed VEGF levels and activity. Mechanistically, we demonstrated that cAMP, in a PDE4B-dependent manner, suppresses PI3K and AKT activities to impose its anti-angiogenic properties. Thus, ectopic expression of a constitutively active AKT gene in PDE4-low DLBCL cell lines abrogated cAMP effects in a manner similar to PDE4B reconstitution, indicating that PI3K/AKT are key mediators of the cAMP/PDE4 effects on angiogenesis.
To expand these observations to more elaborate models, we created a composite mouse where c-Myc-driven lymphomas develop in Pde4b null or wild-type backgrounds. Remarkably, primary lymphomas from Eµ-Myc;Pde4b-/- mice displayed significantly lower MVD (quantified by immunohistochemistry - IHC - with anti-CD34 staining) than the lymphomas that developed in Eµ-Myc;Pde4b+/+ mice (n= 19, p<0.001). Validating our in vitro data, the primary B cell lymphomas originating in the Pde4b-/- background displayed lower PI3K activity, AKT phosphorylation (n=13, p<0.01) and VEGF levels (determined by IHC, n=18, p=0.01).
Next, we tested the hypothesis that pharmacological inhibition of PDE4 in vivo could effectively suppress lymphoma angiogenesis. To that end, we used adoptive transfer to generate multiple independent cohorts of Eµ-Myc-driven lymphoma-bearing mice (n=68), which were randomized to receive vehicle or Roflumilast (5mg/kd/day gavage). B cell lymphomas from Roflumilast-treated mice showed a marked suppression of angiogenesis (p=0.01, for MVD of Roflumilast vs. vehicle groups) and significant decrease in PI3K/AKT activity (p=0.003), which were accompanied by lower serum levels of VEGF (p=0.005). In addition, in comparison to their vehicle-treated isogenic controls, mice that received Roflumilast displayed a smaller tumor burden (p<0.0001) and improved survival (p=0.01). Lastly, we examined a series of primary human DLBCLs (n=28) and confirmed a significant direct correlation between PDE4B levels and microvessel density in these specimens (r=0.43, p=0.02). Together, these data uncover a novel signaling cross-talk between lymphoma cells and the microenvironment that regulates angiogenesis in vivo. Our findings point to PDE4 as actionable proangiogenic factor in B cell lymphomas
Disclosures: No relevant conflicts of interest to declare.
See more of: Non-Hodgkin Lymphoma: Biology, excluding Therapy
See more of: Oral and Poster Abstracts
*signifies non-member of ASH