-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

SCI-21 New Approaches for Mapping Epigenome Dynamics

Program: Scientific Program
Session: Genomics, The Next Frontier: Novel Approaches to Study Cancer and Development
Saturday, December 5, 2015, 9:30 AM-11:00 AM
Hall E1, Level 2 (Orange County Convention Center)
Saturday, December 5, 2015, 2:00 PM-3:30 PM
Valencia A (W415A), Level 4 (Orange County Convention Center)

Steven Henikoff, PhD

Fred Hutchinson Cancer Research Center, Seattle, WA

The protein complexes that package our genomes must be mobilized for active processes to occur, including replication and transcription, but until recently we have only had a static, low resolution view of the ÒepigenomeÓ. Genomes are packaged into nucleosomes, octamers of four core histones wrapped by 147 base pairs of DNA. Nucleosomes present obstacles to transcription, which over genes is the RNA Polymerase II (RNAPII) complex, and one current challenge is to understand what happens to a nucleosome when RNAPII transcribes through the DNA that it occupies. We study this process by developing methods for following nucleosomes as they are evicted and replaced. Among the factors that we have implicated in the process is torsional stress, which we can now measure genome-wide. RNAPII movement can unwrap nucleosomes and thus destabilize them, causing them to be occasionally evicted and replaced. Interestingly, we find that destabilization of nucleosomes during transcription is enhanced by anthracycline compounds, widely used chemotherapeutic drugs that intercalate between DNA base pairs, thus suggesting a new mechanism for cell killing during chemotherapy. We are also interested in what happens to RNAPII during its encounter with a nucleosomes. In vitro, RNAPII cannot transcribe completely through a nucleosome, but rather stalls as it tries to unwrap the DNA from around the core. We have been studying this process in vivo, and have developed a simple method for precisely mapping RNAPII genome-wide. We have used this method to show exactly where RNAPII stalls as it unwraps a nucleosome in vivo, surprisingly in a different place in vivo from where it stalls in vitro. We also have discovered that a variant histone, H2A.Z, which is found in essentially all eukaryotes, helps to reduce the nucleosome barrier to transcription, and in this way may modulate transcription. Other protein components of the epigenome involved in dynamic processes are nucleosome remodelers, which use the energy of ATP to slide or even evict nucleosomes from DNA. Some remodelers help RNAPII get started and others help it overcome the nucleosome barrier to transcription, and by mapping them at base-pair resolution, we can gain insight into how they act. We have also applied our high-resolution mapping tools to transcription factors, which bind DNA at specific sites to regulate transcription and other processes. Our ability to achieve high spatial and temporal resolution mapping of the binding and action of nucleosomes, transcription factors, remodelers and RNAPII provides us with a detailed picture of epigenome dynamics. By using these tools we are beginning to understand how DNA sequence and conformation are recognized for regulation of transcription and other epigenomic processes.

Disclosures: No relevant conflicts of interest to declare.

<< Previous Presentation | Next Presentation