Session: 631. Myeloproliferative Syndromes and Chronic Myeloid Leukemia: Basic and Translational: Poster I
Hematology Disease Topics & Pathways:
Research, Translational Research, Diseases
Aims: To investigate the events that drive bone marrow (BM) fibrosis due to abnormal megakaryocyte-stromal crosstalk, we employed mass spectrometry-based proteomics in a myelofibrosis-like mouse model. Our goal was to identify differentially expressed proteins involving Mks, platelets and BM cells in fibrotic versus non-fibrotic conditions.
Methods: We induced myelofibrosis in mice through repeated injections of supra-pharmacological doses of the thrombopoietin-mimetic Romiplostim (TPOhigh). Subsequently, we isolated Mks, BM cells and platelets from TPOhigh and control mice (injected with saline) and analyzed protein extracts using LC-MS/MS assay. Cytokine levels in plasma and BM cell-free fluids of treated mice were assessed using cytokine arrays. To evaluate fibrosis-related markers, we analyzed the expression of myofibroblasts markers (a-SMA, Vimentin) and ECM synthesis (Fibronectin, Type III Collagen) in mouse embryonic fibroblasts (mEFs) and human BM mesenchymal stromal cells after stimulation with recombinant PF4 using western blot. mEFs were co-cultured with BM-derived Mks in direct and indirect co-culture systems in the presence of increasing TPO concentrations. In some experiments, Mks were transfected with siRNA specifically targeting CXCL4 gene or control siRNA before co-culture with mEFs. Additionally, we quantified plasma PF4/Cxcl4 levels using ELISA assay in a large cohort of MPN patients and normal controls. We also sorted CD41/CD61 Mks from BM aspirates of MPN patients and evaluated CXCL4 mRNA levels through qPCR.
Results: We observed that signaling pathways related to cytoskeletal reorganization, cell adhesion and inflammation, were commonly activated in Mks, platelets and BM cells of TPOhigh mice compared to control mice. The MSP-RON signaling pathway and the Unfolded Protein Response were specifically activated in Mks and platelets, respectively. Among the differentially expressed proteins, the chemokine PF4/Cxcl4 was up regulated exclusively in the proteasomes of the TPOhigh mice. We confirmed Increased levels of PF4/Cxcl4 in plasma and BM cell-free fluids of fibrotic mice using cytokine arrays. In vitro stimulation of BM-derived Mks with high TPO concentrations resulted in increased synthesis and secretion of PF4/Cxcl4. Recombinant PF4/Cxcl4 was rapidly internalized through surface glycosaminoglycans by mEFs and human BM mesenchymal stromal cells, leading to myofibroblast differentiation. Importantly, we demonstrated that these mechanisms were interconnected during Mk-mEF cross-talk in co-culture systems with high TPO concentrations. Genetic down-regulation of CXCL4 in Mks, prior to co-culture in TPO-saturated conditions, mitigated the profibrotic phenotype of mEFs in terms of ECM synthesis and myofibroblast markers expression. Finally, we found higher plasma levels of circulating PF4/Cxcl4 and increased expression in BM-sorted Mks in patients with MPNs.
Conclusions: Our findings identify a crucial role of Mk derived PF4 in the fibrosis progression of MPNs, providing further support for the potential therapeutic strategy of neutralizing PF4.
Disclosures: Cattaneo: Novartis, Pfizer, Incyte, BMS, GSK: Honoraria. Iurlo: Novartis, Pfizer, Incyte, BMS, GSK, AOP Health: Honoraria.