Session: 321. Coagulation and Fibrinolysis: Basic and Translational: Poster II
Hematology Disease Topics & Pathways:
Research, Bleeding and Clotting, Fundamental Science, hemophilia, Diseases, Biological Processes, molecular biology, Technology and Procedures
Objectives. To dissect the mechanism of bone loss in hemophilia, we studied the effects of coagulation factors, such as factor VIII, von Willebrand factor (VWF), activated factor X (FXa) and thrombin, on both osteoclasts and osteoblasts biology and we characterized the osteoclastogenic potential of HA patients’ osteoclast precursors.
Patients/Methods: Peripheral Blood Mononuclear Cells (PBMC) isolated from healthy donors were induced to differentiate into osteoclasts and treated with plasma derived VWF/FVIII complex, human rVWF, human full length rFVIII, activated FX and thrombin. Osteoclastogenesis and expression analysis of RANK, TRAF6 (TNF receptor-associated factor 6), TCIRG1 (T Cell Immune Regulator 1) and osteoclasts protease CTSK (cathepsin K) expression were assessed. Moreover, in vitro assays assessed the osteoclastogenic potential of PBMC isolated from different hemophilic A patients. FACS analyses of osteoclast precursors isolated from patients were performed. Osteoblasts differentiation, mineralization and genes expression (Alkaline Phosphatase and COL1A2) were performed in the presence of aforementioned coagulation factors.
Results. We showed a significant reduction of mature osteoclasts after treatment of HD-PBMC with FVIII, VWF, FVIII/VWF, FXa and thrombin. VWF appears to play a major role to regulate osteoclast differentation from healthy donor-derived PBMC. Indeed, it inhibits by itself ~45% the osteoclastogenesis comparable to OPG, and even more if is complexed with FVIII (53% inhibition). About 50% and 70% reduced levels of osteoclast differentiation were also revealed following treatment with FXa and thrombin, respectively. Interestingly, PBMC from HA patients showed increased ability to form mature osteoclasts compared to those obtained from healthy controls. Osteoclast precursors (CD16−CD14+CD11b+) are significantly higher in HA patients than age and sex matched controls. Moreover, transcriptional analysis revealed increased RANK, TRAF6, CTSK and TCIRG1 genes expression in adult hemophilia patient’s osteoclasts compared to matched controls. FVIII and VWF treatments led also to a statistically significant reduction of ALP positivity in control osteoblasts; opposite effect was shown following thrombin treatment.
Conclusions. All these data support that bone loss observed in haemophilia patients could be related to increased osteoclast formation and activity and that coagulation factors directly impact on bone cells. These results may have important implications in the clinical management of hemophilic patients to prevent bleeding as well as to preserve bone health.
Disclosures: De Cristofaro: Takeda: Consultancy, Honoraria, Research Funding; Bayer: Consultancy, Honoraria, Other: Congress support; CSL-Behring: Honoraria; Pfizer: Honoraria; Roche: Honoraria; Sobi: Honoraria, Research Funding.
See more of: Oral and Poster Abstracts