-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

851 A CD5 Gene Signature Identifies Diffuse Large B-Cell Lymphomas Sensitive to Brutonʼs Tyrosine Kinase Inhibition

Program: Oral and Poster Abstracts
Type: Oral
Session: 621. Lymphomas: Translational – Molecular and Genetic: Insights into Lymphoma: Unraveling the Molecular Complexity for Precision Diagnostics and Therapeutics
Hematology Disease Topics & Pathways:
Research, Translational Research, Lymphomas, non-Hodgkin lymphoma, Non-Biological therapies, B Cell lymphoma, genomics, Diseases, aggressive lymphoma, Therapies, Lymphoid Malignancies, Biological Processes
Monday, December 11, 2023: 3:45 PM

Alan Cooper1*, Sravya Tumuluru2*, Kyle Kissick3*, Girish Venkataraman3*, Joo Y Song, MD4*, Andrew Lytle5*, Gerben Duns, PhD6*, Jovian Yu, MD, MS1, Nikita Kotlov7*, Alexander Bagaev, PhD7*, Brendan Paul Hodkinson, PhD, BS8*, Srimathi Srinivasan9*, Sonali M. Smith1, David W. Scott, MBChB, PhD6, Christian Steidl, MD, PhD10, James Godfrey, MD11 and Justin Kline, MD1,2

1Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
2Committee on Cancer Biology, University of Chicago, Chicago, IL
3Department of Pathology, University of Chicago, Chicago, IL
4Department of Pathology, City of Hope National Medical Center, Duarte, CA
5Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
6BC Cancer, Vancouver, BC, Canada
7BostonGene, Corp., Waltham, MA
8Oncology Translational Research, Janssen Research & Development, Spring House, PA
9Oncology Translational Research, Janssen Research & Development, Lower Gwynedd Township, PA
10Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
11Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA


Diffuse large B-cell lymphomas (DLBCLs) with a non-germinal center B cell-like (non-GCB) cell-of-origin are frequently driven by genetic alterations that culminate in constitutive B-cell receptor (BCR) signaling, which has inspired the exploration of Bruton’s tyrosine kinase inhibitors (BTKi) in these lymphomas. However, the phase III PHOENIX study that randomized untreated, non-GCB DLBCL patients to R-CHOP plus placebo or ibrutinib failed to meet its primary endpoint of event-free survival (Younes et al. 2019), which suggests that cell-of-origin alone is an insufficient biomarker to predict BTKi sensitivity in DLBCL. More recently, a DLBCL genetic classifier termed LymphGen has identified distinct subtypes (MCD and N1) of non-GCB DLBCL that benefit from the addition of BTKi to R-CHOP (Wilson et al. 2021). However, genetic classifiers are complex and difficult to implement in routine clinical settings and may fail to capture all DLBCLs that benefit from BTKi. Therefore, we sought to identify a straightforward biomarker of BTKi responsiveness in DLBCL with greater precision than cell-of-origin but with broader inclusivity than current genomic platforms, such as LymphGen. We hypothesized that CD5 – a surrogate marker of BCR activation – may effectively identify BCR-driven, non-GCB DLBCLs that are sensitive to BTKi therapy, and evaluated the extent to which CD5 protein expression and a transcriptionally defined CD5 gene signature could accurately identify BCR-activated DLBCLs with potential susceptibility to BTKi-based therapies.


CD5 immunohistochemistry (IHC) was performed on a cohort of 406 diagnostic DLBCL samples, which were considered CD5+ if >=30% of lymphoma cells exhibited unequivocal membranous staining. A majority of DLBCL samples had available RNA-sequencing and targeted mutational sequencing data. A comparison of differentially expressed genes between CD5+ and CD5- DLBCLs was performed in order to construct a 60-gene CD5 signature (CD5sig), which was applied to large genomic DLBCL datasets, including pre-treatment biopsies from patients enrolled on PHOENIX (n = 584) to evaluate the utility of the CD5sig in identifying DLBCLs that benefitted from the addition of ibrutinib to R-CHOP.


Twenty-six of 406 DLBCLs were identified as CD5+ by IHC (6% of all DLBCLs; 12% of non-GCB DLBCLs). CD5 IHC+ DLBCLs were majority non-GCB cell-of-origin and were associated with inferior progression-free survival (PFS) to R-CHOP (50% 3-year PFS), compared with CD5 IHC- DLBCLs, consistent with previous reports. Gene set enrichment analysis revealed that CD5 IHC+ DLBCLs exhibited transcriptional features of BCR activation, and mutational analysis demonstrated that CD5 IHC+ DLBCLs were enriched for CD79B BCR-activating mutations known to correlate with BTKi sensitivity. Many CD5 IHC+ DLBCLs, however, lacked canonical BCR-activating mutations or were classified as “Other” by LymphGen. A CD5 gene signature (CD5sig; Figure 1A) was developed that recapitulated these findings in independent DLBCL datasets (NCI, Duke), where ~13% of non-GCB DLBCLs were classified as CD5sig+. Together, these results suggest that CD5 signature expression captures DLBCLs with both a genetic and non-genetic basis for BCR dependence. Supporting this notion, CD5sig+ DLBCL patients (< 60 years) derived a selective and striking event-free and overall survival advantage from the addition of ibrutinib to R-CHOP in the PHOENIX study (Figure 1B), independent of LymphGen classification.


We demonstrate that CD5 IHC and a novel CD5 gene signature identify high-risk, BCR-driven DLBCLs. Importantly, the CD5 signature also identifies DLBCL patients with a selective survival advantage to BTK inhibitor-based therapy, independent of LymphGen classification. In conclusion, the CD5 signature expands upon LymphGen classification as a biomarker of BTKi response by accurately identifying DLBCLs with both genetic and non-genetic bases for BTKi response. The CD5 signature and/or CD5 IHC should be prospectively evaluated in BTKi-based clinical trials for non-GCB DLBCLs.

Disclosures: Kotlov: BostonGene, Corp.: Current Employment, Current equity holder in private company, Current holder of stock options in a privately-held company, Patents & Royalties. Bagaev: BostonGene: Current Employment, Current equity holder in private company, Current holder of stock options in a privately-held company, Patents & Royalties: patents. Hodkinson: Janssen Research & Development: Current Employment. Srinivasan: Janssen Research & Development: Current Employment. Smith: Bristol-Myers Squibb, Gilead, Ono Pharmaceutical: Consultancy, Speakers Bureau. Scott: Abbvie, AstraZeneca, Incyte: Consultancy; Janssen and Roche: Research Funding. Steidl: Seattle Genetics, AbbVie, and Bayer: Consultancy; Bristol Myers Squibb, Epizyme and Trillium Therapeutics Inc.: Research Funding. Godfrey: Merck, Secura Bio: Research Funding; Verastem: Research Funding. Kline: iTeos, Secura Bio: Research Funding; Merck: Consultancy, Research Funding; Verastem: Consultancy, Research Funding; Karyopharm: Consultancy; Kite/Gilead: Consultancy; MorphoSys: Consultancy; Seagen: Consultancy.

*signifies non-member of ASH