Type: Oral
Session: 203. Lymphocytes and Acquired or Congenital Immunodeficiency Disorders: Decoding the Complex Landscape of Human Immunity: Insights From Genetic Mutations to Cellular Heterogeneity
Hematology Disease Topics & Pathways:
Research, Fundamental Science
To investigate the underlying molecular mechanisms, RNA sequencing analysis demonstrated upregulation of B cell receptor signaling related genes, NF-κB pathway signature genes, and cell cycle-related genes in Jmjd1c-deficient B cells upon anti-IgM stimulation, consistent with their hyperresponsiveness. Of particular interest, we observed upregulation of genes encoding the 26S proteasome complex, a pivotal regulator of diverse cellular processes including NF-κB pathway activation and self-antigen presentation. To explore the epigenetic aspect of these genes, we employed CUT&Tag sequencing and found that Jmjd1c deficiency correlated with increased levels of H3K36me1, a marker of active chromatin and gene transcription. Moreover, the H3K36me1 levels of B cell receptor signaling related genes, NF-κB pathway signature genes, and cell cycle-related genes were significantly augmented in Jmjd1c-deficient B cells upon anti-IgM stimulation. Notably, 26S proteasome subunit genes that were upregulated in Jmjd1c-deficient B cells exhibited higher H3K36me1 modification at the promoter regions.
Collectively, our study provides valuable insights into the epigenetic control of B cell autoimmunity through the regulation of H3K36 mono-methylation by Jmjd1c. This mechanism plays a critical role in B cell activation and function, including the regulation of key genes such as those encoding the 26S proteasome complex.
Disclosures: No relevant conflicts of interest to declare.