Session: 203. Lymphocytes and Acquired or Congenital Immunodeficiency Disorders: Poster I
Hematology Disease Topics & Pathways:
Research, Fundamental Science, Lymphomas, Diseases, aggressive lymphoma, immunology, Lymphoid Malignancies, Biological Processes, molecular biology
Methods: We used CRISPR-Cas9 system to knock out PRDM1 in primary human NK-cells isolated from PBMCs of healthy donors and performed whole transcriptome sequencing. ChIP-seq was employed to investigate the global binding spectrum of PRDM1 in primary human NK-cells cultured with K562-mbIL21-Cl9 feeder cells or with IL-2 alone. We also performed integrative genomics analyses to examine the transcriptomic regulation of NK-cell differentiation by PRDM1.
Results: Gene set enrichment analyses (GSEA) demonstrated that PRDM1 KO resulted in enrichment of genes highly expressed in CD56bright cells and depletion of genes upregulated in CD56dim NK-cells. Specifically, we found that PRDM1 deficient NK-cells expressed CD56bright NK-cell master TFs at higher levels, such as TCF7, RUNX2, and MYC. In contrast, TFs that play an important role in more differentiated CD56dim NK cells were downregulated in PRDM1-KO cells, including IKZF3, MAF, and TBX21. Notably, BCL11B, a TF that has been reported to promote canonical and adaptive NK-cell differentiation, was significantly downregulated along with its target gene ZBTB16 when PRDM1 was deleted. Moreover, genes encoding cytotoxic molecules such as PRF1 and GZMB were also repressed in PRDM1-KO NK-cells. Together, these results indicate that PRDM1-KO NK-cells closely resembled the less mature CD56bright NK-cells than the CD56dim terminally differentiated counterpart.
ChIP-seq analysis of PRDM1 revealed that many of the differentially expressed genes (DEGs) between PRDM1 KO and WT cells were directly bound by PRDM1. When integrated with publicly available ATAC-seq datasets, we found that some of these PRDM1 bound sites showed differential chromatin accessibility between CD56bright and CD56dim NK-cells. To explore the transcriptional program regulated by PRDM1, we utilized a regulated system to re-express PRDM1 in KHYG1, an NK-cell lymphoma cell line that is sensitive to PRDM1 overexpression. RNA-seq analysis showed that the DEGs between KHYG1 with short-term re-expression of PRDM1 and control cells overlapped with DEGs between PRDM1 KO vs WT NK-cells. These genes included BCL11B, MAF, PRF1, and GZMB. Therefore, PRDM1 directly regulates genes that are crucial in NK-cell differentiation.
Furthermore, we detected upregulation of memory T-cell or progenitor exhausted T-cell signature genes in PRDM1 KO NK-cells compared with WT, including TCF7, SELL, CCR7, and IL7R. Consistent with this, GSEA analysis demonstrated enrichment of TCF1+ progenitor exhausted T cell or memory T cell upregulated genes in PRDM1 deleted NK-cells, suggesting that PRDM1 KO NK-cells may share some features with memory T-cells or progenitor exhausted T cells. Importantly, MYB, which was found to be essential in progenitor exhausted T cells, was also a direct target of PRDM1 and was upregulated in PRDM1 KO NK-cells. GSEA also showed that PRDM1 depletion in NK-cells led to upregulation of genes highly expressed in mast cell, Th1 cell, B cell, or CD8+ T cell compared to NK cells, which may indicate a role of PRDM1 in maintaining lineage commitment.
Conclusions: Our findings collectively show that PRDM1 may be a master TF that regulates human NK-cell differentiation and functions through direct transcriptional regulation of key target genes.
Disclosures: No relevant conflicts of interest to declare.
See more of: Oral and Poster Abstracts