Session: 621. Lymphomas: Translational—Molecular and Genetic: Poster II
Hematology Disease Topics & Pathways:
Research, Translational Research, Lymphomas, T Cell lymphoma, drug development, Diseases, Lymphoid Malignancies
We observed a high percentage of F1 progeny from all five founder lines to develop spontaneous lymphoproliferative disease compared to control mice (p<0.001). Immunophenotypic and pathologic evaluation was performed by flow cytometry, immunohistochemistry, and clonality by IgH and TCR Vβ PCR analysis. Pathologic features showed a range of lymphoid neoplasms, with pre-T lymphoblastic immunophenotype being the most common. Tumor-bearing animals demonstrated diffuse involvement of all organs, peripheral blood, and bone marrow. Pre-T lymphoblastic lymphomas (LBL) showed expression of cytoplasmic CD3, surface CD4 (dim), TdT, and variable Ki67 with constitutive overexpression of PRMT5, MYC, CYCLIN D1, Ki67, and CD99. We developed a T-LBL cell line (Tg813) derived from a thymic tumor that displayed clonal TCR Vβ.17 gene rearrangement, intracellular TdT and CD3 expression with dim surface CD4 expression, immunophenotypic characteristics consistent with T-ALL/LBL. This cell line was maintained in culture and successfully passaged in immune-competent FVB mice, which led to disseminated disease, suggesting that PRMT5 drives an immune escape program in vivo. Preliminary data demonstrate that tumor-bearing animals display a prominent population of normal and neoplastic T-cell subsets with strong PD1 expression. PD1 expression in T-ALL/LBL has been linked with oncogenic function (Yang, 2019) and, in normal T-cell subsets, is a marker for exhaustion. (Lee, 2015) In addition, treatment of our Tg813 in vitro model with PRMT5 knockdown (CRISPR CAS9) and selective inhibition with a SAM-competitive inhibitor (C220 and PRT382, Prelude Therapeutics) showed a reduction of global symmetric dimethyl arginine, loss of the PRMT5 epigenetic mark H4R3(Sme2) and decreased proliferation with cell cycle arrest by day 6, findings consistent with PRMT5-dependent driver activity. Engraftment of Tg813 into SCID and immunocompetent FVB/N mice led to disseminated lymphomas (mean: 21 days). Tg813 engrafted animals treated with C220 (10mg/kg) showed improved survival compared to vehicle-treated mice (p<0.001). This preclinical model supports the hypothesis that PRMT5 over-expression provides cancer driver activity and a unique opportunity to study the role of this oncogene in an immune-competent, in vivo model system.
Disclosures: Mishra: Teva: Research Funding; Kymera: Research Funding. Vaddi: Prelude Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Scherle: Prelude Therapeutics: Current Employment. Baiocchi: CODIAK Biosciences: Research Funding; Viracta Therapeutics: Consultancy, Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees; eLife (Journal): Other: Editorial board; Atara Biotherapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees.
See more of: Oral and Poster Abstracts