Session: 506. Bone Marrow Microenvironment: Poster I
Hematology Disease Topics & Pathways:
Research, Translational Research
In the present study, using flow cytometry, we first analyzed the number of MDSCs (by gating on Lin- HLA-DR- CD11b+ CD33+) in normal BM (NBM; n=11) and WM symptomatic /MGUS (n=18) and found an increased number of MDSCs in WM specimens compared to controls (p=0.005). We also found that most MDSCs in WM specimens had a granulocytic phenotype (Lin- HLA-DR- CD11b+ CD33+ CD15+). A detailed phenotypic study using CyTOF (mass spectrometry) was performed on MDSCs from NBM (n=4) and WM (n=8). The CyTOF analysis identified 3 subtypes of MDSCs including CD66b+ MDSCs with a granulocytic phenotype (G-MDSCs) and confirmed the expansion of CD66b+ MDSCs in WM symptomatic patients when compared to smoldering WM and normal controls. Our previous studies have shown that granulocyte colony-stimulating factor (G-CSF) expression is increased in the bone marrow of WM (Jalali et al., 2018). Therefore, to determine whether G-CSF accounted for the expansion of CD66b+ G-MDSCs, we treated WM-BM MDSCs with G-CSF and found that the CD66b+ G-MDSC population substantially increased (p=0.0017).
Further, to establish a better understanding of the transcriptome profile and a unique phenotype of CD66b+ G-MDSCs, we performed Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) on WM (n=3) and NBM (n=2) specimens. A significantly high expression of NLRP12, IGFBP7, CXCR4, IL2, CD55, SOX4, and FoxP1 genes was observed in CD66b+ MDSCs as compared to other MDSC populations. This gene expression signature suggested upregulation of inflammatory pathways potentially affecting immune function. Therefore, to evaluate the effect of CD66b+ G-MDSCs on the immune function of other cells in the BM, CD66b+ and CD66b- MDSCs were co-cultured with activated autologous T-cells. We found that while all populations of MDSCs suppressed T-cell activation, CD66b+ G-MDSCs had the greatest suppressive effect.
In conclusion, this study has shown that CD66b+ G-MDSCs are expanded in WM patients, exhibit a unique inflammatory transcriptome, and substantially inhibit T-cell activation and proliferation. Furthermore, CD66b+ G-MDSCs are expanded due to increased G-CSF in the BM microenvironment in WM. Clinical strategies to inhibit the expansion of CD66b+ G-MDSCs may therefore enhance the efficacy of immunological therapies in patients with WM.
Disclosures: Villasboas: Aptose: Research Funding; CRISPR: Research Funding; Enterome: Research Funding; Epizyme: Research Funding; Kite Pharma: Research Funding; Regeneron: Research Funding. Novak: Bristol Myers Squibb: Research Funding. Ansell: SeaGen: Research Funding; Takeda: Research Funding; Bristol Myers Squibb: Research Funding; Regeneron: Research Funding; Affimed: Research Funding; Pfizer: Research Funding; ADC Therapeutics: Research Funding.