Type: Oral
Session: 704. Immunotherapies: Therapeutic T cell Manipulation
Hematology Disease Topics & Pathways:
Biological, Non-Biological, Therapies, CAR-Ts
In single-antigen specific CAR-T cells, mechanisms of resistance include antigen down-regulation, phenotype switch, or PD-1 inhibition (Song et al. Int J Mol Sci 2019). However, very little is understood about the mechanisms of failure that are specific to dual-targeted CAR-T cells. Interestingly, loss of CD19 antigen was not observed in treatment failures in the study.
METHODS: De-identified patient samples were obtained as peripheral blood mononuclear cells on the day of harvest (“pre” samples), at the peak of in vivo CAR-T cell expansion which varied from day 10 to day 21 after infusion (“peak” samples), and on day 28 post-infusion (“d28” samples). The CAR-T cell infusion product was obtained on day 14 of on-site manufacturing (“product” samples). All samples were cryopreserved and single cell preparation was performed with batched samples using 10X Genomics kits. Subsequent analysis was performed in R studio using the Seurat package (Butler et al. Nat Biotech 2018) with SingleR being used to identify cell types in an unbiased manner (Aran et al. Nat Immunol 2019).
RESULTS: We found that distinct T cell clusters were similarly represented in the responder and non-responder samples. The patients’ clinical responses did not depend on the level of CAR expression or the percentage of CAR+ cells in the infusion product. At day 28, however, there was a considerable decrease in the percentage of CAR+ cells in the responder samples possibly due to contracture of the CAR+ T cell compartment after successful clearance of antigen-positive cells. In all samples, the CAR-T cell population shifted from a CD4+ to a CD8+ T cell predominant population after infusion.
We performed differentially-expressed gene analyses (DEG) of the total and CAR-T cells. In the pre samples, genes associated with T-cell stimulation and cell-mediated cytotoxicity were highly expressed in the responder samples. Since the responders had an effective anti-tumor response, we expected these pathways to also be enriched for in the peak samples; however, this was not the case. We hypothesize that differential expression of the above genes was masked due to homeostatic expansion of the T cells following conditioning chemotherapy.
Based on the DEG results, we next interrogated specific genes associated with cytotoxicity, T cell co-stimulation, and checkpoint protein inhibition. Cytotoxicity-associated genes were highly expressed among responder CD8+ T cells in the pre samples, but not in the other samples (Figure 1). Few differences were seen in specific co-stimulatory and checkpoint inhibitor genes at any timepoint in the T cell clusters. We performed gene set enrichment analyses (GSEA). Gene sets representing TCR, IFN-gamma, and PD-1 signaling were significantly increased in the pre samples of the responders but not at later time points or in the infusion products.
DISCUSSION: We found a correlation between expression of genes associated with T cell stimulation and cytotoxicity in pre-treatment patient samples and subsequent response to CAR-T cell therapy. This demonstrates that the existing transcriptome of T cells prior to CAR transduction critically shapes anti-tumor responses. Further work will discover biomarkers that can be used to select patients expected to have better clinical outcomes.
Disclosures: Johnson: Miltenyi Biotec: Research Funding; Cell Vault: Research Funding. Schneider: Lentigen, a Miltenyi Biotec Company: Current Employment, Patents & Royalties. Dropulic: Lentigen, a Miltenyi Biotec Company: Current Employment, Patents & Royalties: CAR-T immunotherapy. Hari: BMS: Consultancy; Amgen: Consultancy; GSK: Consultancy; Janssen: Consultancy; Incyte Corporation: Consultancy; Takeda: Consultancy. Shah: Incyte: Consultancy; Cell Vault: Research Funding; Lily: Consultancy, Honoraria; Kite Pharma: Consultancy, Honoraria; Verastim: Consultancy; TG Therapeutics: Consultancy; Celgene: Consultancy, Honoraria; Miltenyi Biotec: Honoraria, Research Funding.
See more of: Oral and Poster Abstracts