Type: Oral
Session: 602. Disordered Gene Expression in Hematologic Malignancy, including Disordered Epigenetic Regulation: Altered Transcription Factor Regulation
Hematology Disease Topics & Pathways:
AML, HSCs, Animal models, Diseases, Biological Processes, white blood cells, Cell Lineage, epigenetics, Study Population, Myeloid Malignancies, hematopoiesis, integrative -omics
We developed a novel tissue-specific compound mutant mouse model carrying heterozygous deletion of an upstream regulatory element (URE) of Pu.1 along with Tet2 deletion (Vav-iCre+ PU.1URΕ∆/+ Tet2+/flox; Vav-iCre+ PU.1URΕ∆/+ Tet2flox/flox). While none of the single mutant mice developed AML, compound mutant mice developed aggressive myeloid leukemia whose penetrance and latency exhibited Tet2 dose dependency. The disease presented with leukocytosis, anemia and splenomegaly. By cell morphology analysis of the peripheral blood, bone marrow and spleen, the leukemic mice exhibited accumulation of differentiation-blocked myeloblasts, myelocytes and/or metamyelocytes, that was confirmed using detailed myeloid differentiation markers, distinguishing the disease in immature or mature AML. Furthermore, gold standard in vitro and in vivo assays, assessing both self-renewal and differentiation capacity of double mutant mice-derived cells, revealed that the expanded differentiation-blocked stem and progenitor cells bear aberrant self-renewal and disease-initiating capacities. Comprehensive molecular profiling by next generation sequencing of disease-initiating cells uncovered a substantial overlap with human AML, such as functional GF1b loss with concomitant overexpression of CD90/Thy1 (Thivakaran et al., Haematologica 2018). Importantly, our analyses also revealed transcriptional dysregulation, hypermethylation of PU.1 regulated enhancers with concomitant loss of enhancer activity and alterations in chromatin accessibility of particularly genes co-bound by PU.1 and TET2. Current efforts focus on identifying key effectors of the dysregulated PU.1/TET2 sub-network driving malignant transformation in clonal hematopoiesis.
Our collected data provide proof of concept that moderate PU.1 dose impairment can functionally cooperate with the inactivation of Tet2 in the initiation of myeloid leukemia and uncovers a likely unifying AML pathomechansim.
Disclosures: Will: Novartis Pharmaceuticals: Other: Service on advisory boards, Research Funding.
See more of: Oral and Poster Abstracts