-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

1017 A Feasibility and Safety Study of Non-Viral Genome Targeting Anti-CD19 CAR-T in Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia

Program: Oral and Poster Abstracts
Session: 614. Acute Lymphoblastic Leukemia: Therapy, excluding Transplantation: Poster I
Hematology Disease Topics & Pathways:
ALL, CRS, Biological, Leukemia, neurotoxicity, bone marrow, Diseases, Therapies, CAR-Ts, Adverse Events, immune cells, Technology and Procedures, Cell Lineage, gene editing, infusion, Lymphoid Malignancies, Clinically relevant
Saturday, December 5, 2020, 7:00 AM-3:30 PM

Yi Wang, MD1*, Hui Wang, Master1*, Ying Gao, PhD1*, Ding Zhang, Bachelor1*, Yan Zheng, MD1*, Xingxing Hu, Master1*, Qiuying Gao, Master1*, Zuohan Peng, PhD2,3*, Le Li2*, Ben Niu, Master1*, Limin Hou, Master1*, Ling Wang, Bachelor1*, Weihua Zhang, Bachelor1*, Yi Zhang, Bechelor1* and Xingli Ru, Bachelor1*

1Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, China
2Sunnycell Therapeutics Co., Ltd, Xi'an, China
3Faculty of Medicine, Northwest University, Xi'an, China

Introduction

It has been made great clinical progresses in hematological malignancies by chimeric antigen receptor (CAR) T cell therapy which utilizes virus vector for manufacture. However, there’re still issues unresolved, for instance, sophisticated virus production process, deadly Cytokine Release Syndrome (CRS) side-effect, and high recurrence rate, which probably limit the availability of CAR-T therapy. Non-viral Genome Targeting CAR-T (nvGT CAR-T) may provide a feasible solution to those unmet needs mentioned above. We used CRISPR-Cas9 and non-viral vector to insert anti-CD19 CAR DNA to a specific genome locus in human T cells, which in theory, produces more moderate CAR-T cells compared with conventional CAR-T cells. The efficacy of anti-CD19 nvGT CAR-T cells had been demonstrated in our previous pre-clinical studies, and in this Phase I clinical trial (ChiCTR2000031942), its safety and efficacy in relapsed/refractory B-Cell Acute Lymphoblastic Leukemia (r/r B-ALL) patients were explored.

Objective

The primary objective of this Phase I trial is to assess safety, including evaluation of adverse events (AEs) and AEs of special interest, such as CRS and neurotoxicity. Secondary objective is to evaluate efficacy as measured by the ratio of complete remission (CR).

Method

Peripheral blood mononuclear cells were collected from patients or allogeneic donors, then CD3+ T cells were selected and modified by nvGT vector to produce anti-CD19 CAR-T, then administrated to patients with r/r B-ALL.

Up to July 2020, twelve patients with r/r B-ALL had been enrolled in this study and 8 patients completed their treatments and entered follow-up period. For 8 patients with follow-up data, the median age was 33 years (range, 13 to 61), and the median number of previous regimens was 5 (range, 2 to 11). The median baseline percentage of bone marrow (BM) blast is 72% (range, 24.5% to 99%). Among those subjects, 2 patients once have been conducted autologous or allogeneic hematopoietic stem cell transplantation (Auto-HSCT or Allo-HSCT), and 2 patients experienced serious infection before CAR-T infusion. No patient has been treated by any other CAR-T therapy before enrollment. Baseline characteristics refer to Table 1.

Administering a lymphodepleting chemotherapy regimen of cyclophosphamide 450-750 mg/m2 intravenously and fludarabine 25-45 mg/m2 intravenously on the fifth, fourth, and third day before infusion of anti-CD19 nvGT CAR-T, all patients received an infusion at dose of 0.55-8.21×106/kg (Table 1).

Result

Until day 30 post CAR-T cell infusion, 8/8 (100%) cases achieved CR and 7/8 (87.5%) had minimal residual disease (MRD)-negative CR (Table 1). Anti-bacterial and anti-fungal were performed in patients SC-3, SC-4 and SC-5 after CAR-T cell infusion, which seems no influence on efficacy. Patient SC-7 was diagnosed as T-cell Acute Lymphoblastic Leukemia before Allo-HSCT but with recent recurrence of B-ALL, which was MRD-negative CR on day 21 post nvGT CAR-T therapy. Up to July 2020, all cases remain CR status.

CRS occurred in all patients (100%) receiving anti-CD19 nvGT CAR-T cell, including 1 patient (12.5%) with grade 3 (Lee grading system1) CRS, two (25%) with grade 2 CRS, and 5 (62.5%) with grade 1 CRS. There were no cases of grade 4 or higher CRS (Table 1). The median time to onset CRS was 9 days (range, 1 to 12 days) and the median duration of CRS was 6 days (range, 2 to 9 days). None developed neurotoxicity. No fatal or life-threatening reactions happened and no Tocilizumab and Corticosteroids administered following CAR-T treatment. Data including body temperature (Figure 1), CAR-positive T cell percentage (Figure 2), Interleukin-6 (IL-6) and Interleukin-8 (IL-8) (Figure 3 and 4), C-reactive Protein (CRP) (Figure 5), Lactate Dehydrogenase (LDH) (Figure 6), and Procalcitonin (PCT) (Figure 7), are in accordance with the trend of CRS.

Conclusion

This Phase I clinical trial primarily validates the efficacy of this novel CAR-T therapy, however, it still needs time to prove its durability. Surprisingly, we find that nvGT CAR-T therapy is seemingly superior than viral CAR-T therapy in terms of safety. All subjects which are high-risk patients with high tumor burden had low grade CRS, even a few patients sent home for observation post infusion with limited time of in-patient care. Furthermore, patients could tolerate a higher dose without severe adverse events, which probably bring a better dose-related efficacy.

Disclosures: No relevant conflicts of interest to declare.

*signifies non-member of ASH