-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

1541 CoupledCARTM Technology for Treating Thyroid Cancer

Program: Oral and Poster Abstracts
Session: 801. Gene Editing, Therapy and Transfer: Poster I
Hematology Disease Topics & Pathways:
Biological, Therapies, CAR-Ts, immune cells, gene therapy, immunotherapy, infusion
Saturday, December 5, 2020, 7:00 AM-3:30 PM

Xingchen Liu1*, Lei Xiao, PhD2, Keshu Zhou1*, Yu Liu3*, Yong Huang3*, Chengfei Pu2*, Zhiyuan Cao2*, Ruihong Zhu2*, Haiyang Tang2*, Zhipeng Huang2*, Hang Yang2*, Xi Huang2*, Yongping Song1*, Renbin Liu3* and Zhao Wu2*

1Zhengzhou University, Zhengzhou, China
2Innovative Cellular Therapeutics, Shanghai, China
3SUN YAT-SEN University, Guangzhou, China

CoupledCARTM Technology for Treating Thyroid Cancer

Chimeric antigen receptor modified T cells (CAR T) have demonstrated remarkable clinical efficacy in the treatment of B cell malignancies and multiple myeloma. Significant challenges restrict their application across solid tumors due to multiple obstacles, including the lack of robust in vivo CAR-T cell expansion and persistence, the immunosuppressive tumor microenvironment, and tumor escape due to heterogeneous tumor cell composition with a potential loss of the targeted tumor antigen.

To address these difficulties, we generated CAR T cells using a novel CoupledCARTM technology. Specifically, we engineered CoupledCAR T cells with lentiviral vectors encoding an anti-thyroid stimulating hormone receptor (TSHR) CAR molecule. Immunohistochemistry (IHC) results showed that TSHR was highly expressed in thyroid cancer cells making it an ideal tumor-specific target antigen. In vitro co-culture experiments showed that TSHR CAR T cells specifically recognized and consequently killed TSHR-positive tumor cells. Animal experiments showed that TSHR CAR T cells inhibited the proliferation of TSHR-positive tumor cells.

To evaluate the clinical safety and efficacy of anti-TSHR CoupledCAR T cells on refractory or relapsed thyroid cancer, we treated refractory/relapsed post-thyroidectomy thyroid cancer patients according to an IRB approved protocol. We treated two patients using anti-TSHR CoupledCAR T cells and observed the rapid expansion of CAR T cells and enhanced the killing of tumor cells. One patient's best response was complete remission, and the other was near complete remission.

Patient Profile:

Patient 1 Male, 64Y, Papillary Thyroid Carcinoma. In May 2017, Thyroid cancer was diagnosed, bilateral total thyroidectomy, and right cervical lymph node functional dissection were performed in June, followed by iodine 131 isotope therapy. In December 2018, bilateral multiple cervical lymph nodes were enlarged, especially on the right side. In February 2019, right neck lymphadenectomy was performed.

Patient 2 Female, 60Y, Thyroid Carcinoma. In Aug 2013, a "double lobectomy of the thyroid gland” was performed. From Oct 2013 to Jan 2014, she received iodine 131 isotope therapy. In Sep 2014, she was diagnosed with iodine - resistant thyroid cancer. From Sep to Jan 2016, 5 cycles of chemotherapy were performed. In Jun 2016, she enrolled in the Anlotinib experimental group. In Mar 2019, multiple metastases in both lungs and multiple enlarged lymph nodes in the mediastinum were observed.

Observations and Results:

Patient 1: One month after infusion (M1), the patient was evaluated as PR: lymph node metastasis became undetectable and the size of the thoracic paratracheal tumor nodules decreased significantly. Three months after infusion (M3), the patient was evaluated as CR, and the tumor tissue was substantially smaller than M1.

Patient 2: M1, the patient was evaluated as PR (Partial Response): the tumor volume in the right lower lobe of the lung was reduced by approximately 67.51% (decreased from 65*55mm to 42*39mm). Three months after infusion (M3), compared with that before, the tumor volume was reduced by approximately 73.54% and SUV max value decreased from 14.9 to 2.8, therefore, the patient was evaluated as nCR (near complete remission).

We show that TSHR is a good target for treating thyroid cancer, and our anti-TSHR CoupledCAR T cells are safe and effective for treating thyroid cancer. Recruitment is ongoing to evaluate the safety and efficacy of our CoupledCAR T cells. Further, since our CoupledCARTM technology is a platform technology, we are developing it to treat other solid tumors using different target markers.

Disclosures: Xiao: Innovative Cellular Therapeutics: Other: stockholder.

*signifies non-member of ASH