-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

2269 Local Activator and T Cell Engager (αBCMA x αPD-L1 x αCD3) with Enhanced Tumor Killing and Minimal Cytokine Release for the Treatment of Multiple Myeloma

Program: Oral and Poster Abstracts
Session: 652. Myeloma: Pathophysiology and Pre-Clinical Studies, excluding Therapy: Poster II
Hematology Disease Topics & Pathways:
multiple myeloma, Biological, antibodies, Diseases, Therapies, checkpoint inhibitors, Plasma Cell Disorders, immunotherapy, Lymphoid Malignancies
Sunday, December 6, 2020, 7:00 AM-3:30 PM

Melissa Vrohlings1*, Stephanie Jungmichel1*, Jan Müller2*, David Senn1*, Thomas Schleier1*, Fabian Scheifele1*, Severin Wendelspiess1*, Christian Leisner1*, Maria-Theresa Krauth, MD3*, Ulrich Jaeger, MD3 and Leonardo J. Borras1*

1CDR-Life, Schlieren, Switzerland
2Hematology, University Hospital Zurich, Zurich, Switzerland
3Dept. of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria

BCMA-targeting bispecific T-cell engagers in clinical development have demonstrated encouraging preclinical efficacy. The most advanced of these is AMG 420, which showed significantly improved response rates in relapsed/refractory multiple myeloma (MM) patients. Nevertheless, median duration until relapse is currently limited to approximately 12 months, highlighting the need for new drugs with novel MoA. Recently, we reported on a Local Activator and T cell Engager (LocATE) antibody that targets BCMA and selectively blocks programmed death-ligand 1 (PD-L1) on malignant cells (ASCO, June 2019). LocATE induced superior T cell activation and cancer cell killing, in vitro and ex vivo, compared to a BCMAxCD3 BiTE alone or in combination with a PD-L1 inhibitor. Here, we sought to further characterize the novel MoA of our LocATE.

To assess the therapeutic potential of the LocATE, we first investigated whether potent cytotoxicity is uncoupled from high levels of cytokine release. We evaluated three LocATE molecules with different PD-L1 affinities (low, medium, high). Using BCMA-expressing MM cell lines (U-266, MM.1S, RPMI-8226 and H929) with distinct PD-L1 surface expression levels (3 – 53%), we determined the cytokine profile (IL-2, IL-6, IFN-γ, TNF-α) and target cell lysis induced by each candidate in the presence of CD3-positive human T cells. All three candidates exhibited comparable killing potency, however, low-affinity PD-L1 LocATE antibodies induced significantly less cytokine release (up to 10-fold) than its higher PD-L1 affinity counterparts across all cell lines investigated. Notably, using the low-affinity PD-L1 LocATE, we observed a 2-fold increase in tumor cell killing compared to bispecific BCMAxCD3 targeting controls in cell lines expressing high PD-L1 levels (53%), underlining the contribution of PD-L1 inhibition. Accordingly, phenotypic profiling of effector cells showed that the LocATE more potently induced dose-dependent upregulation of the activation markers CD69, CD25 and HLA-DR compared to bispecific controls. Importantly, cytotoxic activity, T cell activation and cytokine release were not induced when BCMA-negative cells expressing high levels of PD-L1 were treated with LocATE, underlining the BCMA-selective killing mechanism.

Since the superior efficacy of LocATE was found to correlate with the expression level of PD-L1 on MM cell lines and upregulation of PD-L1/PD-1 has been reported as one of the major myeloma cell escape mechanisms during treatment with BiTEs, we subsequently investigated the efficacy of LocATE using primary bone marrow samples and peripheral blood mononuclear cell (PBMCs) obtained from MM patients. Six bone marrow mononuclear cell (BMMC) and eight PBMC samples from MM donors of different disease stages were characterized for PD-1/PD-L1 expression levels; analysis of T cell frequency and level of activation/exhaustion was performed based on CD4, CD8, CD25, CD69, Tim-3, Lag-3 and PD-1 marker expression. Using patient samples with high frequencies of PD-1 expressing T cells prior to treatment, LocATE induced superior MM tumor cell lysis and T cell activation compared to BCMAxCD3 bispecific antibodies. No activity was observed on healthy cells, underlining the safe and selective killing mechanism through tumor-local reactivation of exhausted T cells.

Collectively, these findings demonstrate that the simultaneous T cell redirection and tumor-specific checkpoint inhibition with the LocATE leads to an improved therapeutic index with robust tumor cell killing and low levels of cytokine release. Capable of counteracting adaptive immune resistance caused by increased PD-1/PD-L1 signaling, the LocATE antibody has the prospect to significantly improve survival for multiple myeloma patients.

Disclosures: Vrohlings: CDR-Life: Current Employment. Jungmichel: CDR-Life: Current Employment, Other: current option holder. Senn: CDR-Life: Current Employment. Schleier: CDR-Life: Current Employment, Current equity holder in private company. Scheifele: CDR-Life: Current Employment, Current equity holder in private company. Wendelspiess: CDR-Life: Current Employment. Leisner: CDR-Life: Current Employment, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees. Jaeger: CDR Life AG: Consultancy, Research Funding; Miltenyi: Consultancy, Honoraria; Karyopharm: Honoraria; BMS/Celgene: Consultancy, Honoraria, Research Funding; Gilead: Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; AbbVie: Honoraria; F. Hoffmann-La Roche: Honoraria, Research Funding. Borras: CDR-Life: Current Employment, Current equity holder in private company.

*signifies non-member of ASH