-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

519 A Human Model of Down Syndrome Associated Leukemia Reveals Different Cell of Origins for Initiation and Progression

Program: Oral and Poster Abstracts
Type: Oral
Session: 603. Oncogenes and Tumor suppressors: Pre clinical models and Novel Targets
Hematology Disease Topics & Pathways:
AML, Biological, HSCs, Diseases, Pediatric, Biological Processes, Technology and Procedures, Cell Lineage, Xenograft models, gene editing, Study Population, Myeloid Malignancies, hematopoiesis, molecular interactions, pathogenesis
Monday, December 7, 2020: 7:15 AM

Elvin Wagenblast, PhD1, Joana Araújo, MD2*, Olga I. Gan, PhD3*, Sarah K Cutting2*, Alex Murison3*, Jessica L. McLeod3*, Gabriela Krivdova, BSc4, Maria Azkanaz2*, Sabrina A Smith2*, Johann K Hitzler, MD5, John E. Dick, PhD, FRS3,6 and Eric R Lechman, Ph.D.2*

1Princess Margaret Cancer Centre, University Health Network (UHN), East York, ON, Canada
2Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
3Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
4Princess Margaret Cancer Centre, University Health Network, Mississauga, ON, Canada
5The Hospital for Sick Children, Toronto, ON, Canada
6Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada

Introduction: Leukemia is the most common cancer in children and sequencing data suggest that the first genetic alterations often occur in utero. Children with Down syndrome (Trisomy 21, T21) have a 150-fold increased risk of childhood leukemia. In 30% of newborns with Down syndrome, a transient myeloproliferative disorder (pre-leukemia) occurs, which is characterized by a clonal proliferation of immature megakaryoblasts carrying somatic mutations in the GATA1 transcription factor (GATA1s) and resolves spontaneously in most cases. In 20% of the cases, acute megakaryoblastic leukemia (AMKL) evolves from the pre-leukemic clone by acquisition of additional mutations, such as in the cohesin subunit STAG2. It is hypothesized that this represents a multi-step process of leukemogenesis with three distinct genetic events: T21, GATA1s and STAG2. Yet, it remains unclear how an extra copy of chromosome 21 predisposes towards leukemia, the interplay between each genetic event and the cellular origin of transformation.

Methods: Human long-term hematopoietic stem cells (LT-HSCs) were sorted from normal karyotype and T21 fetal livers (N-FL and T21-FL) and subsequently CRISPR/Cas9 edited to try to establish a humanized model of Down Syndrome associated pre-leukemia and AMKL. To model the initiation of the pre-leukemic state, GATA1s mutations were introduced, while additional STAG2- mutations were overlaid to model the progression to fully transformed AMKL. CRISPR/Cas9-edited control, GATA1s, STAG2- and GATA1s/STAG2- LT-HSCs were functionally interrogated in near-clonal xenograft assays, along with transcriptional and epigenetic profiling.

Results: T21 status in combination with GATA1s had a profound synergistic effect on megakaryocytic lineage output in vivo compared to normal karyotype with GATA1s. Moreover, a high percentage of blasts were found in xenografts of GATA1s edited T21-FL LT-HSCs (>30%) but not in xenografts of GATA1s edited N-FL LT-HSCs. Conversely, GATA1s/STAG2- edited LT-HSCs generated grafts with >50% of blasts, regardless of T21 status. The immunophenotype of these blasts recapitulated those observed in patients diagnosed with Down Syndrome pre-leukemia and AMKL (CD117+CD34+CD41+CD71+CD33+CD4+CD7+). Thus, T21 is required for pre-leukemia development, but seems dispensable for AMKL as both N- and T21-FL LT-HSCs underwent leukemic transformation upon GATA1s/STAG2-.

Serial xenotransplantation assays from primary engrafted mice were carried out to assess self-renewal properties of GATA1s-induced pre-leukemia and GATA1s/STAG2- induced AMKL. Only GATA1s/STAG2- edited N- and T21-FL grafts were able to propagate the leukemic phenotype with a high stem cell frequency, which was endowed by the additional STAG2- knock-out. ATACseq and RNAseq profiling of blast populations revealed an enrichment of GATA-binding sites with concomitant up-regulation of genes implicated in translation.

To assess the role of progenitor cells in pre-leukemic initiation and leukemic progression, we CRISPR/Cas9 edited short-term HSCs, common myeloid progenitors and myelo-erythroid progenitors with GATA1s and/or STAG2- and subjected them to xenotransplantation. Strikingly, all progenitor subsets with combined GATA1s/STAG2- editing were able to drive leukemic transformation, while single GATA1s editing in the same subsets did not initiate pre-leukemia. This data strongly suggests that the initial GATA1s mutation must occur in T21 LT-HSCs, but subsequent STAG2 mutations can occur further downstream in progenitors.

Lastly, to gain insight into how chromosome 21 predisposes towards pre-leukemia, three chromosome 21 miRNAs (miR-99a, -125b-2 and -155) were identified to be up-regulated in T21-FL LT-HSCs compared to N-FL LT-HSCs. Over-expression of these miRNAs in N-FL LT-HSCs induced a T21-like state with increased myeloid and megakaryocytic skewing. Dramatically, CRISPR/Cas9-edited knock-out of these miRNAs in GATA1s edited T21-FL LT-HSCs resulted in a block of pre-leukemia initiation.

Conclusion: Our findings demonstrate that T21 is required for pre-leukemia initiation, which is mediated by over-expression of chromosome 21 miRNAs in LT-HSCs. Further, this data demonstrates different cell of origins between pre-leukemia initiation and AMKL progression. Ongoing studies focus on preventing the progression of pre-leukemia to AMKL by pharmacological targeting.

Disclosures: Dick: Bristol-Myers Squibb/Celgene: Research Funding.

*signifies non-member of ASH