-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

1228 Desuppressed Expressions of MiR-29 targets disturb the Leukemeugenesis of MLL-AF9

Disordered Gene Expression in Hematologic Malignancy, including Disordered Epigenetic Regulation
Program: Oral and Poster Abstracts
Session: 602. Disordered Gene Expression in Hematologic Malignancy, including Disordered Epigenetic Regulation: Poster I
Saturday, December 5, 2015, 5:30 PM-7:30 PM
Hall A, Level 2 (Orange County Convention Center)

Wenhuo Hu, PhD1 and Christopher Y. Park, M.D., Ph.D.2

1Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
2Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY

The MLL--AF9 fusion oncogene is associated with acute leukemias in adults and children. Retroviral expression of MLL-AF9 in mouse hematopoietic stem/progenitor cells (HSPCs) rapidly induces acute myeloid leukemia (AML) and therefore serves as an excellent model to study MLL-AF9 induced leukemogenesis. We previously showed that miR-29 is highly expressed in human AML and positively regulates hematopoietic stem cell (HSC) self-renewal. Consistent with a role in AML, higher expression of miR-29 predicts poor survival in AML patients using the TCGA dataset. In addition, transduction of MLL-AF9 into microRNA-29 (miR-29a/b1) null Lin-c-Kit+Sca1+ (LSK) cells was sufficient to induce leukemic colony formation in vitro similar to WT LSK cells, but transplantation of MLL-AF9+ miR-29 null cells into lethally irradiated recipients resulted in an increased disease latency (median - 56 vs 151 days, p<0.001). In addition, with a short time transduction (1 weeks) of MLL-AF9, mice of miR-29 null recipients exhibited long-term donor-derived lymphomyeloid engraftment. MiR-29 null and MLL-AF9 positive HSPCs were serially transplantable, and did not generate AML during a 2 year time period during with 5 times transplantation, suggesting no significant alteration in HSPC self-renewal.

To understand why miR-29 null cells are relative resistant to MLL-AF9 mediated transformation, we first determined whether miR-29 null cells induce genes properly following MLL-AF9 transduction. RNA-sequencing of miR-29 null spleen B cells revealed that 1147 and 559 genes were significantly up- or down-regulated (adjusted p < 0.001) following MLL-AF9 transduction. The absence of miR-29 resulted in dysregulated expression of class I Hox genes, which were nearly undetectable in miR-29 null mature B cells; however, these genes were significantly up-regulated in MLL-AF9+ cells, including Meis1 (2.68-fold), HoxA5 (4.85-fold), Hoxa7 (3.46-fold), HoxA3 (2.43-fold), and HoxA6 (3.35-fold). One important exception was HoxA9, which was undetectable in both MLL-AF9+ or MLL-AF9- B cells, indicating the inability of MLL-AF9 to induce one of its key leukemogenic mediators, HoxA9, in the absence of miR-29. These data suggest the inability of MLL-AF9 to induce AML in the miR-29 null context might due to its inability to properly induce sufficient MLL-AF9 targets. Analysis of dysregulated genes reveals that the top pathways positively regulated by MLL-AF9 were cytokine receptor interactions, and adhesion molecules.

We found Meis1, Ccna2, Hoxa5 and Hoxa9 were significantly down-regulated in miR-29 null versus WT LSK cells, but were similarly induced in MLL-AF9 transformed blasts, suggesting that increased AML latency was not due to lack of ability to induce these known key regulators of leukemogenesis. As miR-29 directly binds to the 3'-UTR of Dnmt3a, we sought to determine whether epigenetic dysregulation underlies the leukemic phenotype in miR-29 null cells. Performing ChIP-Seq for the active epigenetic mark H3K79me2 in c-Kit+Mac-1+ blasts, we identified 4281 and 3649 genes with this mark from WT and miR-29 null blasts, respectively, with an overlap of 3164 genes (66.39%). Next, we compared our data to H3K79me2 positive genes from WT LSK cells, granulocyte-macrophage progenitors (GMP), and MLL-AF9 transformed leukemic-GMP (L-GMP) and found that 45.6%, 48.0%, and 47.1% of these genes were also identified in MLL-AF9+ miR-29 null cells, indicating that miR-29 loss reduces the induction ability of MLL-AF9 targets. We also observed that 379 genes associated with the H3K79me2 mark in both normal LSK cells and MLL-AF9+ miR-29 null blasts were absent in L-GMP, suggesting that these genes confer self-renewal and proliferation capacity to normal HSCs, that their suppression of these genes are important in MLL-AF9 induction of AML, and that their reactivation in miR-29 null cells compromises MLL-AF9 leukemogenic ability. Interestingly, we were able to identify several potential miR-29 targets including Akt3, Map4k4, and Dnmt3a.

Overall, our studies demonstrate that deletion of miR-29 abrogates the leukemogenesis capacity of MLL-AF9, and miR-29 null mice appear to be an important tool for identifying critical mediators of MLL-AF9 induced AML.


Disclosures: No relevant conflicts of interest to declare.

*signifies non-member of ASH