Program: Oral and Poster Abstracts
Session: 506. Hematopoiesis and Stem Cells: Microenvironment, Cell Adhesion and Stromal Stem Cells: Poster III
In this study, we investigated the role of TLR3 and TLR4 in the MSC-mediated generation of Tregs in an allogeneic co-culture model. Data for each experiment were collected from 1 PBMC donor and 3 MSC donors. We found that pre-activation of TLR3 and TLR4 by their ligands (poly I:C for TLR3, LPS for TLR4) enhanced the generation of Tregs by MSCs: 1.2 ± 0.2% in CD4+ cells cultured alone, 3.9 ± 0.3% in co-culture with control MSCs, 6.04 ± 0.1% in co-culture with TLR3-activated MSCs and 6.6 ± 0.4% in co-culture with TLR4-activated MSCs. siRNA-mediated silencing of TLR3 and TLR4 reduced Tregs by 51.7% and 61.8% in co-culture with poly I:C- and LPS-primed MSCs, respectively. Treg levels for the poly I:C-activated group were 6.3 ± 0.2% for co-cultures with control MSCs, 5.2 ± 0.3% for MSCs treated with scrambled RNA and 3 ± 0.3% for MSCs treated with TLR3-siRNA. For the LPS-activated group, Treg levels were 6.7 ± 0.3% with control MSCs, 5.7 ± 0.5% with MSCs treated with scrambled RNA and 2.5 ± 0.3% for MSCs treated with TLR4-siRNA. MSC-mediated Treg induction required cell-cell contact as conditioned media (CM) from TLR-activated or control MSCs failed to induce Tregs among CD4+ enriched cells: 4.75 ± 0.1% in direct co-culture vs 2.72 ± 0.3%, P= 0.004 in CM from control MSCs, 6.35 ± 0.2% in direct co-culture vs 2.97 ± 0.2%, P= 0.0008 in CM from TLR3-activated MSCs, 6.7 ± 0.3% in direct co-culture vs 3.2 ± 0.3, P= 0.001 in CM from the TLR4-activated group. We showed that the notch pathway is activated in CD4+ cells co-cultured with TLR-activated, but not control MSCs, and inhibition of notch signaling reduced MSC-mediated Tregs in co-cultures with TLR3- and TLR4-activated, but not control MSCs: 4.75 ± 0.1% vs 3.76 ± 0.4%, , P= 0.09 in control MSCs, 6.35 ± 0.2% vs 4.43 ± 0.3%, P= 0.012 in TLR3-activated MSCs, 6.7 ± 0.3% vs 3.97 ± 0.1%, P= 0.001 in TLR4-activated MSCs. Our data show a new role for TLR3 and TLR4 in the immunoregulatory function of human MSCs, and indicate the involvement of notch signaling as a mechanism for the further induction of Tregs in TLR3- and TLR4-activated MSCs. These studies have implications for the use of TLR-activated MSCs in the enhanced generation of Tregs such as for the treatment of acute GVHD.
Disclosures: No relevant conflicts of interest to declare.
See more of: Hematopoiesis and Stem Cells: Microenvironment, Cell Adhesion and Stromal Stem Cells
See more of: Oral and Poster Abstracts
*signifies non-member of ASH