Program: Oral and Poster Abstracts
Session: 616. Acute Myeloid Leukemia: Novel Therapy, excluding Transplantation: Poster III
The BM microenvironment is enriched with cytokines and adhesion molecules, such as CXCR4 and E-selectin, which are believed to provide AML cells protection against chemotherapeutic agents (Horacek et al., 2013; Peled and Tavor, 2013). In fact, treatment with sorafenib markedly upregulated CXCR4 levels in FLT3-mutated cells. In addition, leukemia cells can activate endothelial cells (EC) that induce adhesion of a sub-set of the leukemia cells through E-selectin. The adherent AML cells are sequestered in a nonproliferative state that further protects them from chemotherapy (Pezeshkian et al., 2013). Therefore, blocking CXCR4 and E-selectin in parallel could theoretically eliminate the protection provided by the interaction of leukemic cells with their BM microenvironment and enhance effectiveness of chemotherapy in FLT3-mutant AML patients. In the present study, we evaluated the effectiveness of a dual CXCR4 and E-selectin antagonist, GMI-1359 (GlycoMimetics, Inc., Rockville, MD), in targeting FLT3-ITD-mutant AML in vitro and in vivo. High levels of CXCR4 expression were observed in several human and murine AML cell lines, which was further increased in hypoxic (i.e., 1% oxygen) conditions that mimic the BM microenvironment. These FLT3-ITD leukemic cell lines also expressed hypoxia-responsive, functional E-selectin ligands identified by reactivity with an antibody (HECA452) that binds the same carbohydrate epitope required for binding to E-selectin. One such E-selectin ligand CD44 increased in FLT3-ITD cells cultured in hypoxia compared to those cultured in normoxia (i.e. 21% oxygen). In addition, hypoxia also enhanced CXCR4 expression on mesenchymal stem cells (MSC) and EC such as HUVEC. In hypoxic co-cultures of the FLT3-ITD-mutant leukemia cells MV4-11 or MOLM14 with MSCs and ECs (i.e., HUVEC or TeloHAEC), the presence of the dual E-selectin/CXCR4 inhibitor GMI-1359 effectively reduced leukemic cell adhesion by ~ 50% to the MSC/EC feeder layer compared to the PBS-treated control (p<0.05), even in the presence of TNFa, which induces E-selectin expression in EC. However, an E-selectin specific inhibitor only reduced adhesion of MV4-11 and MOLM14 by ~ 20%. GMI-1359 markedly abrogated the protection provided by the BM microenvironment (i.e., hypoxia and/or MSC and EC) of Baf3-FLT3-ITD leukemic cells treated with the FLT3 inhibitor sorafenib. Apoptosis was induced in 36.6%, 35.6% and 48.9% of leukemic cells cultured with sorafenib alone, sorafenib and an E-selectin inhibitor or sorafenib and GMI-1359, respectively.
The significance of these in vitro findings were studied in vivo. Female SCID beige mice were injected iv with MV4-11 and followed for survival. Beginning 14 days post tumor injection, cohorts of mice (n=10/group) were treated with saline, GMI-1359 (40 mg/kg), standard chemotherapy cytarabine plus daunorubicin, or a combination of GMI-1359 and chemotherapy. Combined treatment of mice with GMI-1359 (40 mg/kg) and chemotherapy demonstrated a profound survival benefit compared to controls or chemotherapy alone at day 135 after leukemia cell injection (i.e., 67% vs. 11% or 30%, p=0.0011 and 0.0406, respectively). Single agent treatment with GMI-1359 was statistically indistinguishable from saline alone or chemotherapy alone. In a separate cohort of MV4.11-engrafted mice, the single administration of GMI-1359 increased circulating WBC and leukemic MV4-11cells, which persisted for at least 8 hrs. This effect was consistent with GMI-1359 disrupting the protective effects of the tumor microenvironment and mobilizing MV4-11 cells from the BM niche.. These findings provide the pre-clinical basis for the evaluation of GMI-1359 in patients with FLT3-mutant AML.
Disclosures: Zhang: Karyopharm: Research Funding . Fogler: GlycoMimetics, Inc.: Employment . Magnani: GlycoMimetics: Employment , Equity Ownership , Membership on an entity’s Board of Directors or advisory committees .
See more of: Acute Myeloid Leukemia: Novel Therapy, excluding Transplantation
See more of: Oral and Poster Abstracts
*signifies non-member of ASH