-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

962 Induction of Fetal Hemoglobin and Reduction of Disease Pathology in Sickle Cell Mice By a Synthetic Zinc Finger Gamma-Globin Activator

Thalassemia and Globin Gene Regulation
Program: Oral and Poster Abstracts
Session: 112. Thalassemia and Globin Gene Regulation: Poster I
Saturday, December 5, 2015, 5:30 PM-7:30 PM
Hall A, Level 2 (Orange County Convention Center)

Kenneth R Peterson, PhD1,2, Levi C Makala, DVM, MBA, PhD3, Mayuko Takezaki, MS4*, Carlos F Barbas III, PhD5* and Betty Pace, MD6,7

1Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS
2Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
3Department of Pediatrics and Cancer Center, Georgia Regents University, Augusta, GA
4Pediatrics, Georgia Regents University, Augusta, GA
5Scripps Research Institute, La Jolla, CA
6Sickle Cell Center, Georgia Regents University, Augusta, GA
7Department of Pediatrics, Georgia Regents University, Augusta, GA

A plethora of research has established that the most effective treatment for sickle cell disease (SCD) is increased fetal hemoglobin (HbF). Fetal hemoglobin normally accounts for less than 0.5% of total hemoglobin in adults; increasing levels to approximately 10% alleviates much of the pathophysiology associated with SCD. Hydroxyurea is the only FDA-approved treatment for SCD that results in enhanced HbF production, but this drug is highly pleiotropic in its action and does not exclusively modulate γ-globin gene expression. Thus, research has focused on identifying agents that specifically reactivate γ-globin gene expression during adult definitive erythropoiesis, with minimal off-target effects.  Artificial transcription factors (ATFs) are synthetic proteins designed to bind at a specific DNA sequence and modulate gene expression. The artificial zinc finger gg1-VP64 was designed to target the -117 region of the Aγ-globin gene proximal promoter and activate expression of this gene. Previous studies demonstrated that HbF levels were increased in K562 cells, murine chemical inducer of dimerization (CID)-dependent bone marrow cells carrying a human β-globin locus yeast artificial chromosome (β-YAC) transgene, in CD34+ erythroid progenitor cells from normal donors and β-thalassemia patients, and in vivo, in gg1-VP64 β-YAC double transgenic (bigenic) mice. Transgenic mice with enforced expression of the gg1-VP64 fusion protein only in the erythroid-megakaryocytic compartment were crossed into the Townes sickle cell knock-in mouse (Jackson Laboratory) background. Compared with control sickle cell (HbSS) mice, gg1-VP64 ATF sickle cell (gg1-HbSS) mice had hematological values at levels found in wild-type homozygous or heterozygous adult hemoglobin (HbAA or HbAS, respectively) mice. For example, average RBC (106/mm3) was 11.7 for wild-type mice and 12.9 for gg1 HbSS, compared to 8.2 for HbSS mice. Average HGB (g/dl) was 15.1 for wild-type mice and gg1 HbSS mice, versus 10.0 for HbSS mice.  Average HCT was 52.5% for wild-type mice, 53.7% for gg1 HbSS mice, but only 41.5% for HbSS mice. Finally, average WBC (103/mm3) was 9.4 for wild-type mice, 9.0 for gg1 HbSS mice and 91.0 for HbSS mice. HPLC and Western blot analysis to determine the effect of gg1-VP64 on HbF synthesis are underway. In addition, we are examining mice for numbers of HbF-positive cells, mature cells, and reticulocytes, as well as looking at organ damage. Our results demonstrate that the ATF class of reagent may be an effective gene therapy for treatment of SCD.

Disclosures: Makala: Georgia Regents University: Employment .

*signifies non-member of ASH