Program: Oral and Poster Abstracts
Session: 651. Myeloma: Biology and Pathophysiology, excluding Therapy: Poster II
Single knock down (KD) of each kinase resulted in varying effects on cell viability, suggesting, together with the PIM expression profile, that the three kinases play different roles in the biology of MM. As the Pim2 KD resulted in the most profound decrease in cell viability, we focused our efforts to dissect the mechanistic importance of Pim2. Since Pim1 and Pim2 regulate the DNA damage response (DDR) via checkpoint kinase 1 (Chk1) in other hematologic malignancies, we investigated the effect of Pim2 KD on major signaling factors involved in the DDR. Transient KD resulted in phosphorylation of DDR pathway markers including ATR, CHK1/2, P21 and H2AX, and mimicked the effects of Doxorubicin treatment (a known DNA Damage causing agent). Furthermore, Doxorubicin treatment downregulated Pim2 expression, suggesting that Pim2 functions as an upstream regulator of the DDR pathway in MM.
Pim2 appears to be the most relevant target in MM; however, because of a lack of a specific PIM2 inhibitor we used the pan-PIM inhibitor as a tool compound. Although the pan PIM kinase inhibitor showed single agent activity, combination approaches were more efficacious. Combining the pan-PIM inhibitor with bortezomib shows a significant synergistic effect on cell viability in multiple MM cell lines (MM1S, U266, KMS-12BM). Based on our KD experiments Pim2 predominantly mediates cell viability, suggesting that specifically targeting Pim2 in combination with Bortezomib will have a more direct effect on MM cell survival. To confirm the role of Pim2, ongoing experiments aim to focus on the effects of ectopically expressing Pim2 in the context of myeloma. We propose that Pim2 overexpression will not only serve anti-apoptotic purposes, but will further protect against DNA Damage in human MM cell lines.
Disclosures: Chauhan: Stemline Therapeutics: Consultancy . Huszar: Astra Zeneca: Employment . Raje: Eli Lilly: Research Funding ; Amgen: Consultancy ; AstraZeneca: Research Funding ; Takeda: Consultancy ; BMS: Consultancy ; Celgene Corporation: Consultancy .
See more of: Myeloma: Biology and Pathophysiology, excluding Therapy
See more of: Oral and Poster Abstracts
*signifies non-member of ASH