Program: Oral and Poster Abstracts
Session: 201. Granulocytes, Monocytes and Macrophages: Poster II
We show that exposure of cultured macrophages to hemolytic aged red blood cells, heme or iron causes their functional phenotypic change towards a pro-inflammatory phenotype, with increased expression levels of inflammatory markers such as IL-6 (P<0.001), TNFα (P<0.0001), IL-1β (P<0.001) MHCII (P<0.001), CD86 (P<0.05) and CD14 (P<0.0001) and decreased expression levels of anti-inflammatory markers such as IL-10 (P<0.0001), CD206 (P<0.0001), Arginase-1 and Ym1. Interestingly, hemolysis and macrophage heme/iron accumulation in a mouse model of sickle cell disease triggers similar pro-inflammatory phenotypic alterations in hepatic macrophages, increasing the expression levels of IL-6 (P<0.0001), MHCII (P<0.05), CD86 (P<0.0001) and iNOS (P<0.01). On the mechanistic level, heme-induced pro-inflammatory phenotype switching of macrophages critically depends on ROS production and activation of the TLR4 signaling pathway.
We further demonstrate that the heme scavenger hemopexin protects reticulo-endothelial macrophages from heme overload in heme-loaded Hx-null mice (P<0.05) and reduces production of cytokines (IL-6, TNFα: P<0.01) and reactive oxygen species (P<0.001). Importantly, in sickle mice the administration of human exogenous hemopexin attenuates the inflammatory phenotype of macrophages, by decreasing the expression of IL-6 (P<0.05), MHCII (P<0.01), CD86 (P<0.001) and iNOS (P<0.05).
Taken together, our data suggest that therapeutical administration of hemopexin is beneficial to counteract heme-driven macrophage-mediated inflammation in sickle cell disease.
Disclosures: Brinkman: CSL Behring: Employment . Zuercher: CSL Behring: Employment .
See more of: Granulocytes, Monocytes and Macrophages
See more of: Oral and Poster Abstracts
*signifies non-member of ASH