Program: Oral and Poster Abstracts
Session: 508. Bone Marrow Failure: Poster I
Bone marrow histology showed marked hypocellularity with decrease of all hematopoietic cell lines but without cellular atypia, monocytosis, blast excess or fibrosis. Fanconi anemia was excluded by mitomycin C induced chromosomal breakage studies.
Immunophenotyping of peripheral blood cells showed a reduction of mature B cells, reduced switched memory B cells, whereas the level of activated B-cells and plasma blasts were increased. T cell proliferation upon PHA and specific antigens was normal.
Using whole exome sequencing in patients and both parents we could identify a single potentially disease causing homozygous stop codon mutation (NM_001085487: c.1168G>T: p.E390*) in MYSM1 (Myb-Like, SWIRM And MPN Domain-Containing Protein 1). A family with two affected patients carrying the same mutation has been reported previously (Alsultan A et al, Blood 122:3844, 2013). MYSM1 is a Histone H2A deubiquitinase that has previously been implicated in controlling hematopoietic stem cells, progenitor B cells, and NK cells in mice (Nijnik A et al, Blood 119:1370, 2012).
MYSM1 protein was absent in patients’ EBV-transformed B cell lines (EBV-LCLs). MYSM1-deficient EBV-LCLs had elevated γ-H2AX levels, indicative of increased genomic instability. Upon exposure to UV light, we observed a sustained expression of p53 and phospho-p53 as well as p38 MAPK and phospho-p38 MAPK in patients’ fibroblasts in comparison to fibroblasts from healthy individuals.
In view of the progressive pancytopenia, both siblings underwent allogeneic hematopoietic stem cell transplantation from 10/10 HLA-matched family donors after reduced intensity conditioning with alemtuzumab, fludarabine and treosulfan at 2 and 4 years of age, respectively. The procedure was well tolerated, and both siblings exhibit full donor hematopoietic reconstitution at 21 and 26 months after transplant.
In summary, we here identify a novel human bone marrow failure syndrome caused by MYSM1-deficiency that can be cured by allogeneic hematopoietic stem cell transplantation.
Disclosures: No relevant conflicts of interest to declare.
See more of: Bone Marrow Failure
See more of: Oral and Poster Abstracts
*signifies non-member of ASH