-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

1197 5-Fluorouracil Treatment Leads to Activation of Stem Cell Niche By Reconstructing Mesenchymal Stromal Cells and Exert a Distinct Microenvironmental Impact on Normal and Leukemic Cells

Hematopoiesis and Stem Cells: Microenvironment, Cell Adhesion and Stromal Stem Cells
Program: Oral and Poster Abstracts
Session: 506. Hematopoiesis and Stem Cells: Microenvironment, Cell Adhesion and Stromal Stem Cells: Poster I
Saturday, December 5, 2015, 5:30 PM-7:30 PM
Hall A, Level 2 (Orange County Convention Center)

Seon-Yeong Jeong1*, Jin-A Kim1* and Il-Hoan Oh, MD, PhD2

1Catholic High Performance Cell Therapy Center & Department of Medical Lifescience, The Catholic University of Korea, Seoul, South Korea
2Catholic High Performance Cell Therapy Center & Department of Medical Lifescience, The Catholic University of Korea, Medical School, Seoul, South Korea

Reactivation of endogenous hematopoietic stem cells (HSCs) are initiated by stimulation of bone marrow niche triggered by various injury signals.  Here, we show that treatment with 5-fluorouracil (5-FU) leads to reconstruction of bone marrow (BM) microenvironment to establish an activated niche stimulating hematopoietic stem cells (HSCs). First, we show that pre-treatment with 5-FU leads to engraftment of donor cells in non-irradiated recipient mice without affecting the homing efficiency of HSCs into BM.  The HSC activation effects were reproduced in-vitro by co-culturing hematopoietic cells with CD45-Ter119- stromal cells derived from 5-FU treated BM, but not by co-culture with CD45+ cells or stromal cells obtained from enzymatic digestion of bone from the same mice. Examination of BM mesenchymal cells after 5-FU treatment revealed a rapid emergence of high-proliferating mesenchymal progenitors exhibiting large size colony (CFU-F) and higher self-renewal of colonogenic cells 3-5 days after 5-FU treatment, which was concomitantly associated with regeneration of CD34+Lin-Sca-1+c-kit+ (LSK) cells in the same BM. The cellular changes in mesenchymal stroma was associated with rapid emergence of characteristic mesenchymal cell populations (PDGFR-a+/Leptin receptor+/SSEA-3+: PLS) with 650-folds increase of the PLS cells in BM in 3 days after 5-FU treatment. However, the increase of these PLS mesenchymal cells were not associated with increase in mitotic activity of mesenchymal cells (<5% BrdU+ cells), indicating phenotypic conversion of subpopulation in BM.  Moreover, cellular changes in mesenchymal niche were associated with rapid increase of mesenchymal cells expressing cross-talk molecules such as CXCL-12 (20-folds), Jagged-1 (13-folds) and DLL-1 (15-folds). Furthermore, in-vivo administration of chemicals blocking CXCL-12 and notch signaling during the recovery from the 5-FU treatment led to the significant loss of LSK-SLAM cells in the regenerated BM. Interestingly, the BM niche activated by 5-FU exerted a distinct effect on normal and leukemic cells in a manner that it provide higher support on the primitive state of normal HSCs than for MN-1 induced leukemia cells. Thus, leukemic mice engrafted with MN-1 cells exhibited a decrease in primitive leukemic cell (Lin-c-kit+) and higher survival by 5-FU treatment than those treated by radiation. Taken together, our study reveals the cellular reconstruction of mesenchymal niche in BM during stimulus-induced niche activation and provides an insight on the selective niche targeting as a novel therapeutic strategies for hematological diseases.

Disclosures: No relevant conflicts of interest to declare.

*signifies non-member of ASH