Program: Oral and Poster Abstracts
Session: 322. Disorders of Coagulation or Fibrinolysis: Poster III
Initially, we tested whether these FVIII-specific engineered Tregs were able to suppress neighboring activated T-cell effectors locally. We found that FVIII C2-specific Tregs strongly suppressed myelin basic protein (MBP)-specific T effectors by presentation of both specific antigens in same APC population. However, we also observed that C2-specific Tregs could suppress MBP-specific T effectors presented on different APCs. These results imply contactless suppressive function of C2-specific engineered Tregs. Using a modified trans-well suppression assay, in which physical distance and clear separation between Tregs and a set of T effectors was created, we found that C2-specific activated Tregs showed significant contactless suppression only when T effectors were also present. In addition, and confirming previous studies with polyclonal Tregs, suppression by FVIII-specific engineered Tregs could be overcome by increasing the dose of IL-2 in co-culture media. This suggests that Tregs act, in part, by usurping IL-2 needed by T effectors to proliferate. Surprisingly, neutralization of CTLA-4 did not interfere with FVIII C2-specific suppression of engineered Tregs in contrast to the reversal seen with anti-CD3e-driven non-specific immunosuppression.
Our data strongly suggest that suppressive function of FVIII-specific engineered Tregs is not restricted to cell-to-cell contact. Rather cross-talk of engineered Tregs and T effectors potentially generate a contactless suppressive mechanism to suppress other FVIII-specific multiple effector cells in the local milieu for effective immune tolerance. Understanding the mechanism of contactless suppression mechanism should provide critical clues to develop more effective engineered Tregs as a therapeutic tool in hemophilia A.
(Supported by NIH grants HL061883 and HL126727)
Disclosures: Kim: Henry Jackson Foundation: Other: patent filed . Zhang: Henry Jackson Foundation: Other: patent filed . Scott: Henry Jackson Foundation: Other: patent filed .
See more of: Disorders of Coagulation or Fibrinolysis
See more of: Oral and Poster Abstracts
*signifies non-member of ASH