Program: Oral and Poster Abstracts
Session: 301. Platelet Activation and Biochemistry: Poster II
In this study, we characterized parstatin-mediated effects on platelets and investigated the potential involvement of platelet thrombin receptor (PAR-1, PAR-4)-associated signaling in this phenomenon. Light-transmission aggregometry was used to measure aggregation response in washed platelet preparations, and flow cytometry was used to assess expression of protein markers indicative of platelet activation. Consistent with previous reports, we demonstrated parstatin induces P-Selectin surface expression (degranulation), GPIIb/IIIa activation (PAC-1 binding), and aggregation independent of thrombin receptor cleavage (n=10, healthy donors). Interestingly, platelet shape change was not observed following parstatin treatment, even in the presence of PAR-1 activating peptide (PAR-1-AP, SFLLRN), suggesting parstatin-mediated activation does not signal through G12/13-dependent mechanisms, and may override canonical G12/13 -associated PAR-1 signaling. Pretreatment with Gq-selective PAR-1 antagonist, ML161 (3 µM), or PAR-4-selective antagonist, ML354 (500 nM) did not inhibit parstatin-mediated platelet activation. These findings are consistent with previous reports suggesting this peptide may signal through a Gi-dependent mechanism. Platelet PAR receptors couple to Gαq and Gα12/13, but direct coupling to Gαi is controversial; therefore, parstatin-mediated activation may occur through a signaling cascade unrelated to canonical PAR-associated mechanisms.
Disclosures: No relevant conflicts of interest to declare.
See more of: Platelet Activation and Biochemistry
See more of: Oral and Poster Abstracts
*signifies non-member of ASH