Program: Oral and Poster Abstracts
Session: 635. Myeloproliferative Syndromes: Basic Science: Poster I
The aim of our study was to identify cytokines that are produced in neoplastic MC in a KIT-dependent manner and contribute to increased BM angiogenesis and fibrosis in SM. In a first step, we screened for KIT D816V-dependent production of cytokines relevant to inflammation and microenvironment alterations using growth factor-dependent human cell lines (TF-1 and Mo7e). In these experiments, expression of CCL-2, IL-8, OSM, and VEGF mRNA was induced by KIT D816V but not by wild type KIT. Based on its pleiotropic effects, we focused on CCL-2, also referred to as monocyte chemotactic protein 1 (MCP-1), a CC chemokine that recruits inflammatory cells to sites of inflammation and enhances angiogenesis. KIT D816V+ HMC-1.2 cell were found to express and secrete substantial amounts of CCL-2. Midostaurin, a multikinase inhibitor suppressing the kinase activity of KIT D816V, was found to reduce expression of CCL-2 similar to RNAi-mediated knockdown of KIT. Furthermore, knockdown of STAT5, a key transcription factor downstream of KIT D816V, reduced expression of CCL-2 in HMC-1.2 cells. These results confirmed that CCL-2 expression in neoplastic MC is dependent on KIT D816V.
Since CCL-2 has been reported to promote angiogenesis, we analyzed effects of conditioned medium obtained from HMC-1.2 cells on human umbilical vein endothelial cells (HUVEC) known to express the CCL-2 receptor CCR-2. Indeed, MC-derived conditioned medium induced migration of HUVEC in a wound healing assay (214% ± 38% of control, mean ± SD, p<0.01) as well as in a boyden chamber assay (126% ± 8% of control, p<0.05). Moreover, pre-incubation with a neutralizing antibody against CCL-2 significantly reduced migratory responses (p<0.01), and RNAi-mediated knockdown of CCL-2 in neoplastic MC reduced the effect of conditioned medium to baseline levels (p<0.01). These results confirmed that the migration was CCL-2 dependent. Furthermore, patients with advanced SM often present with marked eosinophilia; and eosinophils are often located in the vicinity of, or even within, BM MC infiltrates. Therefore, we also studied the effect of CCL-2 on eosinophils. Normal human eosinophils as well as the eosinophilic cell line EOL-1 were found to express CCR-2, and to migrate against recombinant CCL-2 in a modified boyden chamber assay. Conditioned medium from KIT D816V+ MC also induced a migratory response in eosinophils (200% ± 30% of control, p<0.05), and a neutralizing antibody against CCL-2 reduced this effect to baseline levels (p<0.05).
Finally, SM-patients were found to have significantly elevated serum CCL-2 levels (n=35, p=0.0048, 407.4 ± 42.3 pg/ml, mean ± SEM) compared to controls (274.3 ± 15.9 pg/ml). The highest serum levels of CCL-2 were detected in patients with advanced SM where tissue remodeling in the BM is often a prominent feature. Moreover, CCL-2 levels were found to correlate with the grade of MC infiltration in the BM (r=0.656, p=0.0002). In summary, KIT D816V induces the expression of various cytokines potentially involved in tissue remodeling and microenvironment alterations in SM. Moreover, we have identified CCL-2 as a critical, KIT D816V-dependent, cytokine-mediator that interacts with structural BM cells and thereby may be involved in disease evolution and progression in SM. Whether CCL-2 may also serve as a therapeutic target in SM is currently being examined.
This study was supported by Austrian Science Fund (FWF) grant P26079-B13.
Disclosures: Sperr: Novartis: Honoraria . Valent: Pfizer: Honoraria ; Celgene: Honoraria ; Ariad: Honoraria , Research Funding ; Bristol-Myers Squibb: Honoraria ; Novartis: Consultancy , Honoraria , Research Funding .
See more of: Myeloproliferative Syndromes: Basic Science
See more of: Oral and Poster Abstracts
*signifies non-member of ASH