-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

3563 Phagocytosis-Mediated Acute Hemolytic Events Induce Distinct Responses By Inflammatory Monocytes

Basic Science and Clinical Practice in Blood Transfusion
Program: Oral and Poster Abstracts
Session: 401. Basic Science and Clinical Practice in Blood Transfusion: Poster III
Monday, December 7, 2015, 6:00 PM-8:00 PM
Hall A, Level 2 (Orange County Convention Center)

Lyla A Youssef1,2*, Stuart Phillip Weisberg, MD, PhD,1*, Sheila Bandyopadhyay, BA3*, Eldad A. Hod, MD3 and Steven L Spitalnik, MD4

1Pathology and Cell Biology, Columbia University Medical Center, New York, NY
2Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY
3Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
4Department of Pathology & Cell Biology, Columbia University, New York, NY

Introduction

Red blood cell (RBC) transfusions are a common therapy, with ~15 million RBC units administered annually in the United States. Studies in mice and dogs identified increased circulating levels of multiple inflammatory cytokines after transfusions of refrigerator storage-damaged RBCs. One chemokine identified was monocyte chemoattractant protein 1 (MCP-1; also known as CCL2). MCP-1 is the ligand for CCR2, which is expressed by several cell types including Ly6Chi (i.e., inflammatory) monocytes. One reserve site of Ly6Chimonocytes is the bone marrow, from which they emigrate into the circulation in a CCR2-dependent manner to traffic to sites of inflammation. Because the spleen is a primary site of RBC clearance, we aimed to identify splenic cells responsible for producing MCP-1 following transfusions of storage-damaged or antibody-coated RBCs.

Methods

Leukoreduced murine RBCs were prepared from wild-type (WT) C57BL/6 donors and refrigerator stored for 12-13 days. MCP-1 transgenic reporter mice were transfused with fresh, or storage-damaged (“old”), or fresh anti-RBC antibody-coated RBCs.  Spleen, bone marrow, and blood were collected post-transfusion and cells were analyzed by multi-parameter flow cytometry.  WT C57BL/6 mice were also transfused with fresh or old RBCs; splenocytes isolated post-transfusion were flow sorted followed by RNA isolation and RT-PCR.

Results

Splenic red pulp macrophages (VCAM1hi, F4/80hi, CD11blo) were primarily responsible for erythrophagocytosis after transfusions with old or antibody-coated RBCs. However, in each case, Ly6C hi, CD11b+ splenic inflammatory monocytes in MCP-1 reporter mice expressed MCP-1. MCP-1 expression by these cells was also confirmed in WT recipients by RT-PCR after flow sorting. Interestingly, only a small percentage of inflammatory monocytes ingested transfused RBCs. Furthermore, circulating inflammatory monocyte levels increased following transfusion of old or antibody-coated RBCs, accompanied by reduced levels in the bone marrow.

Conclusions

Although red pulp macrophages were the major cell type responsible for clearing transfused refrigerator-damaged or antibody-coated RBCs, a different splenic cell population (i.e., inflammatory monocytes) produced MCP-1. Thus, the splenic reserve of inflammatory monocytes produced an inflammatory response following phagocytosis-mediated acute hemolytic events. Increased numbers of circulating inflammatory monocytes and reduced numbers in the bone marrow suggest that these cells emigrated from the bone marrow, perhaps in response to MCP-1 signaling. Thus, one possible mechanism explaining our results is that erythrophagocytosis in the spleen induces an inflammatory response, triggering splenic inflammatory monocytes to synthesize MCP-1 and release it into the circulation; MCP-1 then binds CCR2 on bone marrow inflammatory monocytes, causing their egress into the circulation. The additional signals involved in these phenomena, along with their clinical relevance to transfusion medicine, require additional investigation.

Disclosures: No relevant conflicts of interest to declare.

*signifies non-member of ASH