-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

917 Proteolytic Targeting Chimeric Molecules (PROTACs) Specific for Bromodomain-Containing Protein (BRD) 4 Are Active Against Pre-Clinical Models of Multiple Myeloma

Myeloma: Pathophysiology and Pre-Clinical Studies, excluding Therapy
Program: Oral and Poster Abstracts
Type: Oral
Session: 652. Myeloma: Pathophysiology and Pre-Clinical Studies, excluding Therapy: Novel Targets and Therapeutic Approaches
Monday, December 7, 2015: 7:15 PM
W304ABCD, Level 3 (Orange County Convention Center)

Xiaohui Zhang, M.D., Ph.D.1,2*, Jing Lu, Ph.D.3*, Yimin Qian, Ph.D.3* and Robert Z. Orlowski, Ph.D., M.D.4,5

1Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
2Department of Hematology, Second Affiliated Hospital of Soochow University, Suzhou City, China
3Arvinas, LLC, New Haven, CT
4Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
5Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX

Background:

BRD4, a bromodomain and extraterminal domain (BET) family member, has an important role in modulating the expression of essential oncogenes such as c-MYC, and is emerged as a promising therapeutic target in diverse cancer types. Pharmacologic BET inhibitors in development such as JQ1 and OTX015 display preclinical anti-myeloma activity, and induce preferential loss of BRD4 bound to super-enhancers leading to transcriptional repression of c-MYC. Another approach to target this pathway is through the use of bi-functional molecules, which incorporate a small molecule BRD4 binding moiety with an E3 ubiquitin ligase recognition motif, such as ARV-825 and dBET1 (Lu et al. Chem Biol. 22:755, 2015, Winter et al. Science 348:1376, 2015). These agents induce Cereblon (CRBN)-dependent BRD4 ubiquitination and then proteasome-mediated degradation, thereby also reducing downstream c-MYC protein levels.

Methods:

We performed pre-clinical studies in myeloma cell lines and primary samples using ARV-825 and ARV-763, which are PROTACs that target BRD4 to either the CRBN or the Von Hippel-Lindau (VHL) E3 ligases, respectively. Downstream effects were studied using viability and apoptosis assays, cell cycle profiling, and Western blotting, among others.

Results:

Tetrazolium assays showed that both PROTACs were able to reduce the viability of a panel of myeloma cell lines, including MM1.S, U266, RPMI 8226, ANBL-6, KAS-6/1, and OPM-2 cells, and this occurred with greater potency than was the case for the BRD4 inhibitors JQ1 or OTX015. Median inhibitory concentrations were 5.66-91.98 nM for ARV-825, and 13.22-1522 nM for ARV-763, respectively. This reduction in viability was both time- and concentration-dependent, and was associated with a reduction of cells in the S phase, and an increase in G0/G1 cells, as well as cells with sub-G0/G1 DNA content, suggesting the onset of apoptosis. Programmed cell death was indeed found to be induced based on the appearance of an increase in Annexin V-positive cells by flow cytometry, and in cleaved caspase 8, caspase 9, caspase 3, and poly-ADP-ribose polymerase by Western blotting. The latter was associated with a specific reduction in the expression levels of both BRD4 and c-MYC that did not influence the abundance of other cellular proteins that were not BRD4 targets, and in a reduction in BRD4 and c-MYC mRNA. In contrast, JQ1 and OTX015 exposure resulted in a slight increase in BRD4 protein expression and a lesser decrease of c-MYC protein. Studies of drug combinations showed that, as expected, lenalidomide and pomalidomide were antagonistic to the effects of the CRBN-targeted ARV-825 PROTAC, but these immunomodulatory drugs showed additive or synergistic effects in combination with the VHL-targeted agent ARV-763. Also as expected, bortezomib and carfilzomib reduced the ability of both ARV-825 and ARV-763 to induce BRD4 degradation, but enhanced anti-proliferative and pro-apoptotic effects were seen in a manner that was influenced by the sequence of drug addition. In studies of drug-resistant cell lines, both PROTACs were able to overcome dexamethasone, melphalan, lenalidomide, and bortezomib resistance, but cross-resistance was seen in RPMI 8226/Dox40 cells, suggesting that these compounds are substrates for P-glycoprotein, which is over-expressed in these cells. Finally, we tested BRD4 PROTACs in primary cells isolated from patients with multiple myeloma, and observed rapid loss of viability of these plasma cells.

Conclusions:

Taken together, our data demonstrate that BRD4 degraders have promising activity against pre-clinical models of multiple myeloma, and support their translation to the clinic for patients with relapsed/refractory disease. Additional combination and mechanistic studies, as well as data from ongoing in vivostudies, will be presented at the meeting.

Disclosures: Lu: Arvinas, LLC: Employment , Equity Ownership . Qian: Arvinas, LLC: Employment , Equity Ownership . Orlowski: Acetylon: Membership on an entity’s Board of Directors or advisory committees ; Bristol-Myers Squibb: Consultancy , Research Funding ; Forma Therapeutics: Consultancy ; Celgene: Consultancy , Research Funding ; Millennium Pharmaceuticals: Consultancy , Research Funding ; Array BioPharma: Consultancy , Research Funding ; Onyx Pharmaceuticals: Consultancy , Research Funding ; Janssen Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees ; Genentech: Consultancy ; BioTheryX, Inc.: Membership on an entity’s Board of Directors or advisory committees ; Spectrum Pharmaceuticals: Research Funding .

*signifies non-member of ASH