-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

3873 ONC201 Exhibits Mutation-Independent Efficacy with Superior Potency in Non-Hodgkin Lymphoma and Multiple Myeloma

Non-Hodgkin Lymphoma: Biology, excluding Therapy
Program: Oral and Poster Abstracts
Session: 622. Non-Hodgkin Lymphoma: Biology, excluding Therapy: Poster III
Monday, December 7, 2015, 6:00 PM-8:00 PM
Hall A, Level 2 (Orange County Convention Center)

Joshua Allen, Ph.D.1*, Rohinton Tarapore, Ph.D.1*, Mathew J Garnett, Ph.D.2* and Cyril Benes, Ph.D.3*

1Oncoceutics, Inc, Hummelstown, PA
2Wellcome Trust Sanger Institute, Cambridge, United Kingdom
3Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA

ONC201 is a first-in-class small molecule inducer of the integrated stress response that is currently in phase II clinical trials in select advanced cancers with promising early clinical results. The efficacy of this novel agent has been demonstrated in numerous preclinical advance cancer models in multiple indications with an exceptional safety profile that has translated well to the clinic. To determine the preclinical sensitivity profile of ONC201 in cancer, we performed an in vitro efficacy screen across >1,000 human cancer cell lines that represent a diverse array of tumor types and genetic aberrations. Sensitivity profiling was assessed by cell viability assays using dose responses curves at concentrations up to 20uM and at 72 hours post-treatment. Ranking the sensitivity dataset by tumor type, non-Hodgkin’s lymphomas and multiple myeloma were the most sensitive tumor type to ONC201.

The mutation-agnostic efficacy that is most pronounced in lymphomas and multiple myeloma is in accordance with the recent findings that ONC201 induces the integrated stress response through a novel target to trigger is downstream late apoptotic effects. B-cell malignancies are particularly susceptible to induction of apoptosis via the integrated stress response, as they have relatively high basal activation of this pathway due to ER stress conferred by immunoglobulin production. Confirmatory studies revealed that multiple myeloma cell lines indeed possess pronounced sensitivity with nanomolar GI50s, unlike most other tumor types, that is particularly encouraging given the systemic concentrations observed in the first-in-man study. Together, these studies suggest specific advanced cancer indications, such as non-Hodgkin’s lymphoma and multiple myeloma, as promising lead indications for this novel agent that are being evaluated in phase II clinical trials.

Disclosures: Allen: Oncoceutics, Inc: Employment , Equity Ownership . Tarapore: Oncoceutics, Inc: Employment , Equity Ownership .

*signifies non-member of ASH