-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

2750 Identification and Characterization of HLA Class I-Restricted MYD88 L265P-Derived Peptides As Tumor-Specific Targets for Immunotherapy

Lymphoma: Pre-Clinical – Chemotherapy and Biologic Agents
Program: Oral and Poster Abstracts
Session: 625. Lymphoma: Pre-Clinical – Chemotherapy and Biologic Agents: Poster II
Sunday, December 6, 2015, 6:00 PM-8:00 PM
Hall A, Level 2 (Orange County Convention Center)

Annika Nelde1,2*, Juliane S Stickel, MD2*, Daniel Johannes Kowalewski1*, Oliver Olaf Wolz1*, Lothar Kanz, MD2, Anton W. Langerak3*, Alice F. Muggen4*, Irina Bonzheim5*, Falko Fend, MD5*, Hans-Georg Rammensee, PhD1*, Stefan Stevanovic, PhD1* and Alexander N.R. Weber1*

1Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tuebingen, Germany
2Department of Hematology and Oncology, University of Tuebingen, Tuebingen, Germany
3Department of Immunology, Erasmus MC Rotterdam, Rotterdam, Netherlands
4Department of Immunology, Erasmus MC Rotterdam, 3015 CN Rotterdam, Rotterdam, Netherlands
5Department of Pathology, University Hospital Tuebingen, Tuebingen, Germany

Non-Hodgkin lymphomas (NHL) are frequent malignancies with considerable mortality. A recurrent somatic and oncogenic driver mutation in the Toll-like receptor adaptor gene MYD88, Leu265Pro (L265P) has been identified in up to 90% of certain NHL subtypes. Genetic alterations affecting a protein-coding region have the potential to generate mutation-derived peptides that are presented by HLA class I proteins and might be recognized by cytotoxic T cells. Because MYD88L265P is a widely occurring and tumor-specific mutation, we investigated the potential of MYD88L265P-containing peptides for CD8+ T cell mediated immunotherapy as a new therapeutic approach for MYD88L265P+ NHL.

Based on in silico prediction we identified potential HLA ligands encompassing the MYD88L265P mutation for several HLA class I allotypes. Functional characterization of the candidate HLA class I MYD88L265P-derived HLA class I ligands with regard to induction of T cell responses identified a set of immunogenic peptides for HLA-B*07 and ‑B*15. In one MYD88L265P-mutated NHL patient, memory T cell responses targeting three different MYD88L265P-derived HLA class I ligands were detected by IFN-γ ELISPOT. Efficient T cell priming was demonstrated in vitro using naïve T cells of healthy volunteers (HVs). In detail, three HLA‑B*07 peptides (P1-3B*07) and one HLA‑B*15-restricted peptide (P4B*15) were analyzed using artificial antigen-presenting cell-based (aAPC) in vitro priming experiments in three to six HVs, respectively. For all tested peptides proliferation of peptide-specific CD8+ T cells could be detected after in vitro priming. For the HLA-B*07-restricted ligands, peptide-specific CD8+ T cells could be induced in 6/6 (P1B*15), 1/3 (P2B*07) and 3/4 (P3B*07) HVs, respectively, with a maximum frequency of 14.1% peptide-specific CD8+ T cells. For the HLA-B*15-restricted ligand (P4B*15), peptide-specific CD8+ T cells could be induced in 2/3 HVs with a maximum frequency of 9.5% tetramer-positive CD8+ T cells. The functionality and specificity of peptide-specific CD8+ T cells after aAPC-based in vitro priming was validated by intracellular cytokine staining for IFN-γ and TNF-α as well as for the expression of the degranulation marker CD107a. In 3/3 HVs primed with P1B*07 (RPIPIKYKAM) as well as in 1/2 HVs primed with P4B*15 (HQKRPIPIKY), we detected specific and functional CD8+ T cell populations after stimulation with the mutated peptides, but not after stimulation with the corresponding wild type peptides (P1WT: RLIPIKYKAM, P4WT: HQKRLIPIKY). Furthermore, the peptide-specific cytotoxic activity of specific CD8+ T cells was demonstrated in a VITAL assay. The polyclonal P1B*07- and P4B*15-specific CD8+ T cells (0.12% and 0.76% peptide-specific T cells, respectively) lysed autologous peripheral blood mononuclear cells loaded with the mutated peptides, but not cells presenting the wild type peptides. P4B*15-specific CD8+ T cells showed 17.9% (±1.2%) MYD88L265P-peptide-specific cell killing at an E/T ratio of 1:1 compared to 2.6% (±1.2%) of non-specific cell lysis of unspecific effector cells against the same targets in three independent replicates, respectively. The specific lysis showed an E/T ratio-dependent manner as the specific lysis decreases with reducing E/T ratios. P1B*07-specific CD8+ T cells specifically killed 11.4% (±1.7%) of MYD88L265P loaded targets at an E/T ratio of 0.7:1 in comparison to 2.1% unspecific lysis of unspecific effector cells.

In this study, we identified and characterized MYD88L265P mutation-derived HLA class I ligands for T cell mediated immunotherapy. The strong immunogenicity of the HLA-B*07 and HLA-B*15-restricted mutation-derived peptides as well as the functionality and specificity of peptide-specific CD8+ T cells, demonstrated by cytotoxicity assays, underline the potential of the MYD88L265P mutation as tumor-specific target. These data highlight the potential of MYD88L265P mutation-specific immunotherapy as a novel broadly applicable and tumor-specific treatment approach for patients with MYD88L265P+ NHL.

Disclosures: Langerak: InVivoScribe: Patents & Royalties: Licensing of IP and Patent on BIOMED-2-based methods for PCR-based Clonality Diagnostics. ; DAKO: Patents & Royalties: Licensing of IP and Patent on Split-Signal FISH. Royalties for Dept. of Immunology, Erasmus MC, Rotterdam, NL ; Roche: Other: Lab services in the field of MRD diagnostics provided by Dept of Immunology, Erasmus MC (Rotterdam) .

*signifies non-member of ASH